Centrifugal Modeling and Validation of Solute Transport within Unsaturated Zone

Numerical modeling has been adopted to assess the feasibility of centrifugal simulation of solute transport within the unsaturated zone. A numerical model was developed to study the centrifugal simulation of nonreactive, adsorption, radionuclide, and reactive solutes. The results showed that it is f...

Full description

Bibliographic Details
Main Author: Huanhuan Qin
Format: Article
Language:English
Published: MDPI AG 2019-03-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/11/3/610
Description
Summary:Numerical modeling has been adopted to assess the feasibility of centrifugal simulation of solute transport within the unsaturated zone. A numerical model was developed to study the centrifugal simulation of nonreactive, adsorption, radionuclide, and reactive solutes. The results showed that it is feasible to conduct centrifugal experiments for nonreactive solute transport. For the solute transport containing physical processes or chemical reactions, if the reaction is very rapid or slow, it is feasible to conduct centrifugal experiments. For the solute transport with a product B generated, if the reaction is relatively slow, the centrifugal prediction of solute is suitable. The centrifugal prediction of solute A matches the prototype quite well, but the prediction of B is in poor quality. If B is the focus, it is not feasible to conduct centrifugal experiments; but if B is not important, the centrifugal modeling is suitable. This has significant implications for the centrifugal modeling application to solute transport simulation within the unsaturated zone.
ISSN:2073-4441