A Model-Downscaling Method for Fine-Resolution LAI Estimation

The leaf area index (LAI) is a critical parameter for characterizing the structure and function of vegetation in ecosystems. Currently, operational LAI products always have coarse spatial resolution, and fine-resolution LAI maps are urgently needed for ecological environment assessment and the preci...

Full description

Bibliographic Details
Main Authors: Jingyu Zhang, Jindi Wang, Rui Sun, Hongmin Zhou, Helin Zhang
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/12/24/4147
Description
Summary:The leaf area index (LAI) is a critical parameter for characterizing the structure and function of vegetation in ecosystems. Currently, operational LAI products always have coarse spatial resolution, and fine-resolution LAI maps are urgently needed for ecological environment assessment and the precise monitoring of cropland growth. LAI downscaling methods are efficient at improving the spatial resolution of LAI products but often ignore the scaling effect of the model. In this study, a novel model-downscaling method is proposed for fine-resolution LAI estimation. It uses scaling equations of model parameters (SEMPs) to describe the scaling relations of models at different spatial resolutions and construct a downscaled model from a coarse-resolution model. Landsat Normalized Difference Vegetation Index (NDVI) at 30 m and Global LAnd Surface Satellite (GLASS) LAI at 1 km spatial resolutions are used because they are readily available. The downscaled model is evaluated by a fine-resolution model directly constructed with fine-resolution data. The fine-resolution LAI values estimated by this model-downscaling method are evaluated with field LAI measurements. The validation results show that the proposed method can generate highly accurate LAIs, with an RMSE of 0.821 at the Pshenichne cropland site in Ukraine and an RMSE of 0.515 at the Camerons forest site in Australia when compared with field LAI measurements. The results are also better than those of Ovakoglou’s downscaling method. These results demonstrate that the model-downscaling method for fine-resolution LAI estimation is viable and referable for related studies.
ISSN:2072-4292