Existence, uniqueness and exponential decay of solutions to Kirchhoff equation in R^n
We discuss the global well-posedness and uniform exponential stability for the Kirchhoff equation in $\mathbb{R}^n$ $$ u_{tt}-M\Big(\int_{\mathbb{R}^n}|\nabla u|^2dx\Big)\Delta u +\lambda u_t=0 \quad \text{in } \mathbb{R}^n\times (0,\infty). $$ The global solvability is proved when the initial...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2016-09-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2016/247/abstr.html |
id |
doaj-c6b9b763b1074a54ac8a3d1e39ca4106 |
---|---|
record_format |
Article |
spelling |
doaj-c6b9b763b1074a54ac8a3d1e39ca41062020-11-24T23:05:17ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912016-09-012016247,127Existence, uniqueness and exponential decay of solutions to Kirchhoff equation in R^nFlavio Roberto Dias Silva0Joao Manoel Soriano Pitot1Andre Vicente2 Univ. Estadual do Oeste do Parana, Brazil Univ. Estadual Paulista, Brazil Univ. Estadual do Oeste do Parana, Brazil We discuss the global well-posedness and uniform exponential stability for the Kirchhoff equation in $\mathbb{R}^n$ $$ u_{tt}-M\Big(\int_{\mathbb{R}^n}|\nabla u|^2dx\Big)\Delta u +\lambda u_t=0 \quad \text{in } \mathbb{R}^n\times (0,\infty). $$ The global solvability is proved when the initial data are taken small enough and the exponential decay of the energy is obtained in the strong topology $H^2(\mathbb{R}^n)\times H^1(\mathbb{R}^n)$, which is a different feature of the present article when compared with the prior literature. We also dedicate a section to discuss a model with the frictional damping term $\lambda u_t$, is replaced by a viscoelastic damping term $\int_0^tg(t-s)\Delta u(s)ds$.http://ejde.math.txstate.edu/Volumes/2016/247/abstr.htmlKirchhoff equationexistence and uniqueness of solutionuniform stabilityexponential decayfrictional dampingviscoelastic damping |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Flavio Roberto Dias Silva Joao Manoel Soriano Pitot Andre Vicente |
spellingShingle |
Flavio Roberto Dias Silva Joao Manoel Soriano Pitot Andre Vicente Existence, uniqueness and exponential decay of solutions to Kirchhoff equation in R^n Electronic Journal of Differential Equations Kirchhoff equation existence and uniqueness of solution uniform stability exponential decay frictional damping viscoelastic damping |
author_facet |
Flavio Roberto Dias Silva Joao Manoel Soriano Pitot Andre Vicente |
author_sort |
Flavio Roberto Dias Silva |
title |
Existence, uniqueness and exponential decay of solutions to Kirchhoff equation in R^n |
title_short |
Existence, uniqueness and exponential decay of solutions to Kirchhoff equation in R^n |
title_full |
Existence, uniqueness and exponential decay of solutions to Kirchhoff equation in R^n |
title_fullStr |
Existence, uniqueness and exponential decay of solutions to Kirchhoff equation in R^n |
title_full_unstemmed |
Existence, uniqueness and exponential decay of solutions to Kirchhoff equation in R^n |
title_sort |
existence, uniqueness and exponential decay of solutions to kirchhoff equation in r^n |
publisher |
Texas State University |
series |
Electronic Journal of Differential Equations |
issn |
1072-6691 |
publishDate |
2016-09-01 |
description |
We discuss the global well-posedness and uniform exponential stability
for the Kirchhoff equation in $\mathbb{R}^n$
$$
u_{tt}-M\Big(\int_{\mathbb{R}^n}|\nabla u|^2dx\Big)\Delta u
+\lambda u_t=0 \quad \text{in } \mathbb{R}^n\times (0,\infty).
$$
The global solvability is proved when the initial data are taken small
enough and the exponential decay of the energy is obtained in the strong
topology $H^2(\mathbb{R}^n)\times H^1(\mathbb{R}^n)$, which is a different
feature of the present article when compared with the prior literature.
We also dedicate a section to discuss a model with the frictional damping term
$\lambda u_t$, is replaced by a viscoelastic damping term
$\int_0^tg(t-s)\Delta u(s)ds$. |
topic |
Kirchhoff equation existence and uniqueness of solution uniform stability exponential decay frictional damping viscoelastic damping |
url |
http://ejde.math.txstate.edu/Volumes/2016/247/abstr.html |
work_keys_str_mv |
AT flaviorobertodiassilva existenceuniquenessandexponentialdecayofsolutionstokirchhoffequationinrn AT joaomanoelsorianopitot existenceuniquenessandexponentialdecayofsolutionstokirchhoffequationinrn AT andrevicente existenceuniquenessandexponentialdecayofsolutionstokirchhoffequationinrn |
_version_ |
1725626533481021440 |