Existence, uniqueness and exponential decay of solutions to Kirchhoff equation in R^n

We discuss the global well-posedness and uniform exponential stability for the Kirchhoff equation in $\mathbb{R}^n$ $$ u_{tt}-M\Big(\int_{\mathbb{R}^n}|\nabla u|^2dx\Big)\Delta u +\lambda u_t=0 \quad \text{in } \mathbb{R}^n\times (0,\infty). $$ The global solvability is proved when the initial...

Full description

Bibliographic Details
Main Authors: Flavio Roberto Dias Silva, Joao Manoel Soriano Pitot, Andre Vicente
Format: Article
Language:English
Published: Texas State University 2016-09-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2016/247/abstr.html
id doaj-c6b9b763b1074a54ac8a3d1e39ca4106
record_format Article
spelling doaj-c6b9b763b1074a54ac8a3d1e39ca41062020-11-24T23:05:17ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912016-09-012016247,127Existence, uniqueness and exponential decay of solutions to Kirchhoff equation in R^nFlavio Roberto Dias Silva0Joao Manoel Soriano Pitot1Andre Vicente2 Univ. Estadual do Oeste do Parana, Brazil Univ. Estadual Paulista, Brazil Univ. Estadual do Oeste do Parana, Brazil We discuss the global well-posedness and uniform exponential stability for the Kirchhoff equation in $\mathbb{R}^n$ $$ u_{tt}-M\Big(\int_{\mathbb{R}^n}|\nabla u|^2dx\Big)\Delta u +\lambda u_t=0 \quad \text{in } \mathbb{R}^n\times (0,\infty). $$ The global solvability is proved when the initial data are taken small enough and the exponential decay of the energy is obtained in the strong topology $H^2(\mathbb{R}^n)\times H^1(\mathbb{R}^n)$, which is a different feature of the present article when compared with the prior literature. We also dedicate a section to discuss a model with the frictional damping term $\lambda u_t$, is replaced by a viscoelastic damping term $\int_0^tg(t-s)\Delta u(s)ds$.http://ejde.math.txstate.edu/Volumes/2016/247/abstr.htmlKirchhoff equationexistence and uniqueness of solutionuniform stabilityexponential decayfrictional dampingviscoelastic damping
collection DOAJ
language English
format Article
sources DOAJ
author Flavio Roberto Dias Silva
Joao Manoel Soriano Pitot
Andre Vicente
spellingShingle Flavio Roberto Dias Silva
Joao Manoel Soriano Pitot
Andre Vicente
Existence, uniqueness and exponential decay of solutions to Kirchhoff equation in R^n
Electronic Journal of Differential Equations
Kirchhoff equation
existence and uniqueness of solution
uniform stability
exponential decay
frictional damping
viscoelastic damping
author_facet Flavio Roberto Dias Silva
Joao Manoel Soriano Pitot
Andre Vicente
author_sort Flavio Roberto Dias Silva
title Existence, uniqueness and exponential decay of solutions to Kirchhoff equation in R^n
title_short Existence, uniqueness and exponential decay of solutions to Kirchhoff equation in R^n
title_full Existence, uniqueness and exponential decay of solutions to Kirchhoff equation in R^n
title_fullStr Existence, uniqueness and exponential decay of solutions to Kirchhoff equation in R^n
title_full_unstemmed Existence, uniqueness and exponential decay of solutions to Kirchhoff equation in R^n
title_sort existence, uniqueness and exponential decay of solutions to kirchhoff equation in r^n
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2016-09-01
description We discuss the global well-posedness and uniform exponential stability for the Kirchhoff equation in $\mathbb{R}^n$ $$ u_{tt}-M\Big(\int_{\mathbb{R}^n}|\nabla u|^2dx\Big)\Delta u +\lambda u_t=0 \quad \text{in } \mathbb{R}^n\times (0,\infty). $$ The global solvability is proved when the initial data are taken small enough and the exponential decay of the energy is obtained in the strong topology $H^2(\mathbb{R}^n)\times H^1(\mathbb{R}^n)$, which is a different feature of the present article when compared with the prior literature. We also dedicate a section to discuss a model with the frictional damping term $\lambda u_t$, is replaced by a viscoelastic damping term $\int_0^tg(t-s)\Delta u(s)ds$.
topic Kirchhoff equation
existence and uniqueness of solution
uniform stability
exponential decay
frictional damping
viscoelastic damping
url http://ejde.math.txstate.edu/Volumes/2016/247/abstr.html
work_keys_str_mv AT flaviorobertodiassilva existenceuniquenessandexponentialdecayofsolutionstokirchhoffequationinrn
AT joaomanoelsorianopitot existenceuniquenessandexponentialdecayofsolutionstokirchhoffequationinrn
AT andrevicente existenceuniquenessandexponentialdecayofsolutionstokirchhoffequationinrn
_version_ 1725626533481021440