Evaluation of WRF-DART (ARW v3.9.1.1 and DART Manhattan release) multiphase cloud water path assimilation for short-term solar irradiance forecasting in a tropical environment
<p>Numerical weather prediction models tend to underestimate cloud presence and therefore often overestimate global horizontal irradiance (GHI). The assimilation of cloud water path (CWP) retrievals from geostationary satellites using an ensemble Kalman filter (EnKF) led to improved short-term...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-09-01
|
Series: | Geoscientific Model Development |
Online Access: | https://www.geosci-model-dev.net/12/3939/2019/gmd-12-3939-2019.pdf |
id |
doaj-c6f643d33a2d4a8d9a78bf5fe136614e |
---|---|
record_format |
Article |
spelling |
doaj-c6f643d33a2d4a8d9a78bf5fe136614e2020-11-24T21:49:47ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032019-09-01123939395410.5194/gmd-12-3939-2019Evaluation of WRF-DART (ARW v3.9.1.1 and DART Manhattan release) multiphase cloud water path assimilation for short-term solar irradiance forecasting in a tropical environmentF. Kurzrock0F. Kurzrock1H. Nguyen2J. Sauer3F. Chane Ming4S. Cros5W. L. Smith Jr.6P. Minnis7R. Palikonda8T. A. Jones9C. Lallemand10L. Linguet11G. Lajoie12Institut de Recherche pour le Développement (IRD), UMR 228, ESPACE-DEV, Université de La Réunion, Saint-Denis, La Réunion, FranceReuniwatt SAS, Sainte Clotilde, La Réunion, FranceReuniwatt SAS, Sainte Clotilde, La Réunion, FranceReuniwatt SAS, Sainte Clotilde, La Réunion, FranceLaboratoire de l’Atmosphère et des Cyclones, UMR8105, UMR CNRS – Météo-France – Université, Université de La Réunion, La Réunion, FranceReuniwatt SAS, Sainte Clotilde, La Réunion, FranceClimate Science Branch (E302), NASA Langley Research Center, Hampton, Virginia, USAClimate Science Branch (E302), NASA Langley Research Center, Hampton, Virginia, USAClimate Science Branch (E302), NASA Langley Research Center, Hampton, Virginia, USACooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma, USAReuniwatt SAS, Sainte Clotilde, La Réunion, FranceInstitut de Recherche pour le Développement (IRD), UMR 228, ESPACE-DEV, Université de Guyane, Cayenne, Guyane, FranceInstitut de Recherche pour le Développement (IRD), UMR 228, ESPACE-DEV, Université de La Réunion, Saint-Denis, La Réunion, France<p>Numerical weather prediction models tend to underestimate cloud presence and therefore often overestimate global horizontal irradiance (GHI). The assimilation of cloud water path (CWP) retrievals from geostationary satellites using an ensemble Kalman filter (EnKF) led to improved short-term GHI forecasts of the Weather Research and Forecasting (WRF) model in midlatitudes in case studies. An evaluation of the method under tropical conditions and a quantification of this improvement for study periods of more than a few days are still missing. This paper focuses on the assimilation of CWP retrievals in three phases (ice, supercooled, and liquid) in a 6-hourly cycling procedure and on the impact of this method on short-term forecasts of GHI for Réunion Island, a tropical island in the southwest Indian Ocean. The multilayer gridded cloud properties of NASA Langley's Satellite ClOud and Radiation Property retrieval System (SatCORPS) are assimilated using the EnKF of the Data Assimilation Research Testbed (DART) Manhattan release (revision 12002) and the advanced research WRF (ARW) v3.9.1.1. The ability of the method to improve cloud analyses and GHI forecasts is demonstrated, and a comparison using independent radiosoundings shows a reduction of specific humidity bias in the WRF analyses, especially in the low and middle troposphere. Ground-based GHI observations at 12 sites on Réunion Island are used to quantify the impact of CWP DA. Over a total of 44 d during austral summertime, when averaged over all sites, CWP data assimilation has a positive impact on GHI forecasts for all lead times between 5 and 14 h. Root mean square error and mean absolute error are reduced by 4 % and 3 %, respectively.</p>https://www.geosci-model-dev.net/12/3939/2019/gmd-12-3939-2019.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
F. Kurzrock F. Kurzrock H. Nguyen J. Sauer F. Chane Ming S. Cros W. L. Smith Jr. P. Minnis R. Palikonda T. A. Jones C. Lallemand L. Linguet G. Lajoie |
spellingShingle |
F. Kurzrock F. Kurzrock H. Nguyen J. Sauer F. Chane Ming S. Cros W. L. Smith Jr. P. Minnis R. Palikonda T. A. Jones C. Lallemand L. Linguet G. Lajoie Evaluation of WRF-DART (ARW v3.9.1.1 and DART Manhattan release) multiphase cloud water path assimilation for short-term solar irradiance forecasting in a tropical environment Geoscientific Model Development |
author_facet |
F. Kurzrock F. Kurzrock H. Nguyen J. Sauer F. Chane Ming S. Cros W. L. Smith Jr. P. Minnis R. Palikonda T. A. Jones C. Lallemand L. Linguet G. Lajoie |
author_sort |
F. Kurzrock |
title |
Evaluation of WRF-DART (ARW v3.9.1.1 and DART Manhattan release) multiphase cloud water path assimilation for short-term solar irradiance forecasting in a tropical environment |
title_short |
Evaluation of WRF-DART (ARW v3.9.1.1 and DART Manhattan release) multiphase cloud water path assimilation for short-term solar irradiance forecasting in a tropical environment |
title_full |
Evaluation of WRF-DART (ARW v3.9.1.1 and DART Manhattan release) multiphase cloud water path assimilation for short-term solar irradiance forecasting in a tropical environment |
title_fullStr |
Evaluation of WRF-DART (ARW v3.9.1.1 and DART Manhattan release) multiphase cloud water path assimilation for short-term solar irradiance forecasting in a tropical environment |
title_full_unstemmed |
Evaluation of WRF-DART (ARW v3.9.1.1 and DART Manhattan release) multiphase cloud water path assimilation for short-term solar irradiance forecasting in a tropical environment |
title_sort |
evaluation of wrf-dart (arw v3.9.1.1 and dart manhattan release) multiphase cloud water path assimilation for short-term solar irradiance forecasting in a tropical environment |
publisher |
Copernicus Publications |
series |
Geoscientific Model Development |
issn |
1991-959X 1991-9603 |
publishDate |
2019-09-01 |
description |
<p>Numerical weather prediction models tend to underestimate cloud presence and therefore often overestimate global horizontal irradiance (GHI). The assimilation of cloud water path (CWP) retrievals from geostationary satellites using an ensemble Kalman filter (EnKF) led to improved short-term GHI forecasts of the Weather Research and Forecasting (WRF) model in midlatitudes in case studies. An evaluation of the method under tropical conditions and a quantification of this improvement for study periods of more than a few days are still missing. This paper focuses on the assimilation of CWP retrievals in three phases (ice, supercooled, and liquid) in a 6-hourly cycling procedure and on the impact of this method on short-term forecasts of GHI for Réunion Island, a tropical island in the southwest Indian Ocean. The multilayer gridded cloud properties of NASA Langley's Satellite ClOud and Radiation Property retrieval System (SatCORPS) are assimilated using the EnKF of the Data Assimilation Research Testbed (DART) Manhattan release (revision 12002) and the advanced research WRF (ARW) v3.9.1.1. The ability of the method to improve cloud analyses and GHI forecasts is demonstrated, and a comparison using independent radiosoundings shows a reduction of specific humidity bias in the WRF analyses, especially in the low and middle troposphere. Ground-based GHI observations at 12 sites on Réunion Island are used to quantify the impact of CWP DA. Over a total of 44 d during austral summertime, when averaged over all sites, CWP data assimilation has a positive impact on GHI forecasts for all lead times between 5 and 14 h. Root mean square error and mean absolute error are reduced by 4 % and 3 %, respectively.</p> |
url |
https://www.geosci-model-dev.net/12/3939/2019/gmd-12-3939-2019.pdf |
work_keys_str_mv |
AT fkurzrock evaluationofwrfdartarwv3911anddartmanhattanreleasemultiphasecloudwaterpathassimilationforshorttermsolarirradianceforecastinginatropicalenvironment AT fkurzrock evaluationofwrfdartarwv3911anddartmanhattanreleasemultiphasecloudwaterpathassimilationforshorttermsolarirradianceforecastinginatropicalenvironment AT hnguyen evaluationofwrfdartarwv3911anddartmanhattanreleasemultiphasecloudwaterpathassimilationforshorttermsolarirradianceforecastinginatropicalenvironment AT jsauer evaluationofwrfdartarwv3911anddartmanhattanreleasemultiphasecloudwaterpathassimilationforshorttermsolarirradianceforecastinginatropicalenvironment AT fchaneming evaluationofwrfdartarwv3911anddartmanhattanreleasemultiphasecloudwaterpathassimilationforshorttermsolarirradianceforecastinginatropicalenvironment AT scros evaluationofwrfdartarwv3911anddartmanhattanreleasemultiphasecloudwaterpathassimilationforshorttermsolarirradianceforecastinginatropicalenvironment AT wlsmithjr evaluationofwrfdartarwv3911anddartmanhattanreleasemultiphasecloudwaterpathassimilationforshorttermsolarirradianceforecastinginatropicalenvironment AT pminnis evaluationofwrfdartarwv3911anddartmanhattanreleasemultiphasecloudwaterpathassimilationforshorttermsolarirradianceforecastinginatropicalenvironment AT rpalikonda evaluationofwrfdartarwv3911anddartmanhattanreleasemultiphasecloudwaterpathassimilationforshorttermsolarirradianceforecastinginatropicalenvironment AT tajones evaluationofwrfdartarwv3911anddartmanhattanreleasemultiphasecloudwaterpathassimilationforshorttermsolarirradianceforecastinginatropicalenvironment AT clallemand evaluationofwrfdartarwv3911anddartmanhattanreleasemultiphasecloudwaterpathassimilationforshorttermsolarirradianceforecastinginatropicalenvironment AT llinguet evaluationofwrfdartarwv3911anddartmanhattanreleasemultiphasecloudwaterpathassimilationforshorttermsolarirradianceforecastinginatropicalenvironment AT glajoie evaluationofwrfdartarwv3911anddartmanhattanreleasemultiphasecloudwaterpathassimilationforshorttermsolarirradianceforecastinginatropicalenvironment |
_version_ |
1725887547249262592 |