Estimation of Soil Hydraulic Properties Curve through Beerkan Infiltration Experiment Algorithms

Nowadays, the Beerkan computational algorithms (BESTslope and BESTsteday) are known as the suitable indirect methods for estimating soil saturated hydraulic conductivity (Ks) and sorptivity (S), as well as the scale parameter (hg) in van Genuchten soil water retention equation through the data colle...

Full description

Bibliographic Details
Main Authors: T. Ahmady, M. Delbari, P. Afrasiab
Format: Article
Language:fas
Published: Isfahan University of Technology 2019-09-01
Series:علوم آب و خاک
Subjects:
Online Access:http://jstnar.iut.ac.ir/article-1-3463-en.html
Description
Summary:Nowadays, the Beerkan computational algorithms (BESTslope and BESTsteday) are known as the suitable indirect methods for estimating soil saturated hydraulic conductivity (Ks) and sorptivity (S), as well as the scale parameter (hg) in van Genuchten soil water retention equation through the data collected in the Beerkan infiltration experiment and other required data. The purpose of this study was to compare these algorithms in estimating Ks and S, as well as the soil water content corresponding to the suctions of 33 kPa, 100 kPa, 200 kPa, 300 kPa and 1500 kPa. For this purpose, a total of 40 Beerkan infiltration experiments were carried out in Sistan dam research field. From all Beerkan experiments, 30 tests in loam and sandy loam textures having a relative error less than 5.5% (Er <5.5%) were selected for further analysis. The statistical criteria RMSE, ME and ωr2 were used to compare the measured and estimated water content values at each suction. The results showed that the BESTsteday algorithm, which had a more simple calculating process than the main algorithm (i.e. BESTslope), could provide the Ks and S values and the soil water content of the near field capacity with an acceptable accuracy. The model performance in estimating water content corresponding to the 1500 kpa suction head (i.e. θfc) was not acceptable for both algorithms. Moreover, the relative error of estimating soil water content (Er(h,θ)) was decreased gradually by an increase in clay %.
ISSN:2476-3594
2476-5554