Recent Advances in Electrode Design Based on One-Dimensional Nanostructure Arrays for Proton Exchange Membrane Fuel Cell Applications

One-dimensional (1D) Pt-based electrocatalysts demonstrate outstanding catalytic activities and stability toward the oxygen reduction reaction (ORR). Advances in three-dimensional (3D) ordered electrodes based on 1D Pt-based nanostructure arrays have revealed great potential for developing high-perf...

Full description

Bibliographic Details
Main Author: Shangfeng Du
Format: Article
Language:English
Published: Elsevier 2021-01-01
Series:Engineering
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2095809920303659
Description
Summary:One-dimensional (1D) Pt-based electrocatalysts demonstrate outstanding catalytic activities and stability toward the oxygen reduction reaction (ORR). Advances in three-dimensional (3D) ordered electrodes based on 1D Pt-based nanostructure arrays have revealed great potential for developing high-performance proton exchange membrane fuel cells (PEMFCs), in particular for addressing the mass transfer and durability challenges of Pt/C nanoparticle electrodes. This paper reviews recent progress in the field, with a focus on the 3D ordered electrodes based on self-standing Pt nanowire arrays. Nanostructured thin-film (NSTF) catalysts are discussed along with electrodes made from Pt-based nanoparticles deposited on arrays of polymer nanowires, and carbon and TiO2 nanotubes. Achievements on electrodes from Pt-based nanotube arrays are also reviewed. The importance of size, surface properties, and the distribution control of 1D catalyst nanostructures is indicated. Finally, challenges and future development opportunities are addressed regarding increasing electrochemical surface area (ECSA) and quantifying oxygen mass transport resistance for 1D nanostructure array electrodes.
ISSN:2095-8099