Dynamic Stress Measurement with Sensor Data Compensation

Applying parachutes-deployed Wireless Sensor Network (WSN) in monitoring the high-altitude space is a promising solution for its effectiveness and cost. However, both the high deviation of data and the rapid change of various environment factors (air pressure, temperature, wind speed, etc.) pose a g...

Full description

Bibliographic Details
Main Authors: Jingjing Gu, Zhiteng Dong, Cai Zhang, Xiaojiang Du, Mohsen Guizani
Format: Article
Language:English
Published: MDPI AG 2019-08-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/8/8/859
Description
Summary:Applying parachutes-deployed Wireless Sensor Network (WSN) in monitoring the high-altitude space is a promising solution for its effectiveness and cost. However, both the high deviation of data and the rapid change of various environment factors (air pressure, temperature, wind speed, etc.) pose a great challenge. To this end, we solve this challenge with data compensation in dynamic stress measurements of parachutes during the working stage. Specifically, we construct a data compensation model to correct the deviation based on neural network by taking into account a variety of environmental parameters, and name it as Data Compensation based on Back Propagation Neural Network (DC-BPNN). Then, for improving the speed and accuracy of training the DC-BPNN, we propose a novel Adaptive Artificial Bee Colony (AABC) algorithm. We also address its stability of solution by deriving a stability bound. Finally, to verify the real performance, we conduct a set of real implemented experiments of airdropped WSN.
ISSN:2079-9292