Existence of least energy nodal solution for Kirchhoff–Schrödinger–Poisson system with potential vanishing

Abstract This paper deals with the following Kirchhoff–Schrödinger–Poisson system: { − ( a + b ∫ R 3 | ∇ u | 2 d x ) Δ u + V ( x ) u + ϕ u = K ( x ) f ( u ) in  R 3 , − Δ ϕ = u 2 in  R 3 , $$ \textstyle\begin{cases} -(a+b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}\,dx)\Delta u+V(x)u+\phi u=K(x)...

Full description

Bibliographic Details
Main Authors: Jin-Long Zhang, Da-Bin Wang
Format: Article
Language:English
Published: SpringerOpen 2020-06-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-020-01408-2
id doaj-c7862670fcdc4b6091d76e328538c79a
record_format Article
spelling doaj-c7862670fcdc4b6091d76e328538c79a2020-11-25T03:54:41ZengSpringerOpenBoundary Value Problems1687-27702020-06-012020111710.1186/s13661-020-01408-2Existence of least energy nodal solution for Kirchhoff–Schrödinger–Poisson system with potential vanishingJin-Long Zhang0Da-Bin Wang1Department of Applied Mathematics, Lanzhou University of TechnologyDepartment of Applied Mathematics, Lanzhou University of TechnologyAbstract This paper deals with the following Kirchhoff–Schrödinger–Poisson system: { − ( a + b ∫ R 3 | ∇ u | 2 d x ) Δ u + V ( x ) u + ϕ u = K ( x ) f ( u ) in  R 3 , − Δ ϕ = u 2 in  R 3 , $$ \textstyle\begin{cases} -(a+b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}\,dx)\Delta u+V(x)u+\phi u=K(x)f(u)&\text{in } \mathbb{R}^{3}, \\ -\Delta \phi =u^{2}&\text{in } \mathbb{R}^{3}, \end{cases} $$ where a, b are positive constants, K ( x ) $K(x)$ , V ( x ) $V(x)$ are positive continuous functions vanishing at infinity, and f ( u ) $f(u)$ is a continuous function. Using the Nehari manifold and variational methods, we prove that this problem has a least energy nodal solution. Furthermore, if f is an odd function, then we obtain that the equation has infinitely many nontrivial solutions.http://link.springer.com/article/10.1186/s13661-020-01408-2Potential vanishingNehari manifoldLeast energy nodal solution
collection DOAJ
language English
format Article
sources DOAJ
author Jin-Long Zhang
Da-Bin Wang
spellingShingle Jin-Long Zhang
Da-Bin Wang
Existence of least energy nodal solution for Kirchhoff–Schrödinger–Poisson system with potential vanishing
Boundary Value Problems
Potential vanishing
Nehari manifold
Least energy nodal solution
author_facet Jin-Long Zhang
Da-Bin Wang
author_sort Jin-Long Zhang
title Existence of least energy nodal solution for Kirchhoff–Schrödinger–Poisson system with potential vanishing
title_short Existence of least energy nodal solution for Kirchhoff–Schrödinger–Poisson system with potential vanishing
title_full Existence of least energy nodal solution for Kirchhoff–Schrödinger–Poisson system with potential vanishing
title_fullStr Existence of least energy nodal solution for Kirchhoff–Schrödinger–Poisson system with potential vanishing
title_full_unstemmed Existence of least energy nodal solution for Kirchhoff–Schrödinger–Poisson system with potential vanishing
title_sort existence of least energy nodal solution for kirchhoff–schrödinger–poisson system with potential vanishing
publisher SpringerOpen
series Boundary Value Problems
issn 1687-2770
publishDate 2020-06-01
description Abstract This paper deals with the following Kirchhoff–Schrödinger–Poisson system: { − ( a + b ∫ R 3 | ∇ u | 2 d x ) Δ u + V ( x ) u + ϕ u = K ( x ) f ( u ) in  R 3 , − Δ ϕ = u 2 in  R 3 , $$ \textstyle\begin{cases} -(a+b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}\,dx)\Delta u+V(x)u+\phi u=K(x)f(u)&\text{in } \mathbb{R}^{3}, \\ -\Delta \phi =u^{2}&\text{in } \mathbb{R}^{3}, \end{cases} $$ where a, b are positive constants, K ( x ) $K(x)$ , V ( x ) $V(x)$ are positive continuous functions vanishing at infinity, and f ( u ) $f(u)$ is a continuous function. Using the Nehari manifold and variational methods, we prove that this problem has a least energy nodal solution. Furthermore, if f is an odd function, then we obtain that the equation has infinitely many nontrivial solutions.
topic Potential vanishing
Nehari manifold
Least energy nodal solution
url http://link.springer.com/article/10.1186/s13661-020-01408-2
work_keys_str_mv AT jinlongzhang existenceofleastenergynodalsolutionforkirchhoffschrodingerpoissonsystemwithpotentialvanishing
AT dabinwang existenceofleastenergynodalsolutionforkirchhoffschrodingerpoissonsystemwithpotentialvanishing
_version_ 1724472284596404224