Comparative study of the phase stability in SrTaO2N

Recently, ferroelectric behavior was observed in compressed SrTaO2N thin films epitaxially grown on SrTiO3 substrates. Piezoresponse force microscopy measurements revealed small domains (101–102 nm) that exhibited classical ferroelectricity, a behavior not previously observed in perovskite oxynitrid...

Full description

Bibliographic Details
Main Authors: Roberto Emilio Alonso, Marcela A. Taylor, Arles V. Gil Rebaza, Marcelo Cappelletti, Victoria Fernández
Format: Article
Language:English
Published: Elsevier 2018-01-01
Series:Boletín de la Sociedad Española de Cerámica y Vidrio
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0366317517300924
Description
Summary:Recently, ferroelectric behavior was observed in compressed SrTaO2N thin films epitaxially grown on SrTiO3 substrates. Piezoresponse force microscopy measurements revealed small domains (101–102 nm) that exhibited classical ferroelectricity, a behavior not previously observed in perovskite oxynitrides. The surrounding matrix region exhibited relaxor ferroelectric-like behavior. Bulk SrTaO2N samples do not show ferroelectricity, thus suggesting that the origin of it may be related with the strain induced by the substrate. Ab-initio calculations reported that the small domains and the surrounding matrix had trans-type and a cis-type anion arrangements, respectively, but do not describe the experimentally observed equilibrium phase, nor the strain dependent polarization. In this work, we present high accurate all-electron first-principles calculations on the different possible local structures that can explain the ferroelectric-like properties of the strained material. The determined local structure and oxygen/nitrogen ordering has been related with polarization and epitaxial strain. The potential energies and polarization as functions of the in-plane lattice constant are reported.
ISSN:0366-3175