Electromechanical Dynamic Behaviour and Start-Up Evaluation of Tumbling Ball Mills
This paper presents a dynamic simulator of the electromechanical coupling start-up of a ball mill. The electromechanical coupling model based on the dynamic model of the ball mill, the characteristic equation of the clutch, and the dynamic model of the induction motor is established. Comparison betw...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2018/3515308 |
Summary: | This paper presents a dynamic simulator of the electromechanical coupling start-up of a ball mill. The electromechanical coupling model based on the dynamic model of the ball mill, the characteristic equation of the clutch, and the dynamic model of the induction motor is established. Comparison between the simulation results of angular speed, load torque and current obtained from the model, and the experimental results is conducted to validate the correctness of these simulation results. Results show that the simulation results of the electromechanical model are highly consistent with the experimental results. Two indexes are proposed for evaluation. Finally, a 4500 kW ball mill is used to analyse the start-up process with different operation parameters of the air clutch. The effect of the engagement time and the pressure of the air clutch on the torque, current, and shock extent is analysed. Moreover, the optimum inflation time is determined. |
---|---|
ISSN: | 1024-123X 1563-5147 |