Enhancing Charge Transfer and Photoelectric Characteristics for Organic Solar Cells
The main purpose of this work is to analyze the effect of steric hindrance on the photoelectric performance of three different donor sensitizers (ZHG5, ZHG6, and ZHG7) by molecular theory simulation engineering. Photoelectric physical and photoelectric chemical parameters are investigated by means o...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Journal of Nanomaterials |
Online Access: | http://dx.doi.org/10.1155/2020/5641063 |
Summary: | The main purpose of this work is to analyze the effect of steric hindrance on the photoelectric performance of three different donor sensitizers (ZHG5, ZHG6, and ZHG7) by molecular theory simulation engineering. Photoelectric physical and photoelectric chemical parameters are investigated by means of frontier molecular orbital, global reactivity descriptors, optical absorption properties, fluorescent lifetime, charge density difference, and influence of external electric field. The results showed that the performance of the quinoxaline sensitizer was deteriorated by gradually increasing the steric hindrance to auxiliary donors. The optical properties of the hybridization of cir-coronene graphene quantum dot (GR) with the three dyes have been revealed, and the results show that graphene quantum dots can indeed improve the optical properties of solar cells. In addition, nine new molecules were designed by inserting six functional groups; it is found that inserting -CN in the acceptor part of the molecular structure is beneficial to the performance of the sensitizer. |
---|---|
ISSN: | 1687-4110 1687-4129 |