Molecular fingerprinting of complex grass allergoids: size assessments reveal new insights in epitope repertoires and functional capacities
Abstract Background Subcutaneous allergen immunotherapy (SCIT) is a well-documented treatment for allergic disease which involves injections of native allergen or modified (allergoid) extracts. The use of allergoid vaccines is a growing sector of the allergy immunotherapy market, associated with sho...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2017-04-01
|
Series: | World Allergy Organization Journal |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s40413-017-0146-3 |
id |
doaj-c7a795a10fcb42cda0f5fe534ae3f452 |
---|---|
record_format |
Article |
spelling |
doaj-c7a795a10fcb42cda0f5fe534ae3f4522020-11-25T00:51:44ZengElsevierWorld Allergy Organization Journal1939-45512017-04-0110111310.1186/s40413-017-0146-3Molecular fingerprinting of complex grass allergoids: size assessments reveal new insights in epitope repertoires and functional capacitiesS. Starchenka0A. J. Bell1J. Mwange2M. A. Skinner3M. D. Heath4Allergy Therapeutics, LtdAllergy Therapeutics, LtdAllergy Therapeutics, LtdAllergy Therapeutics, LtdAllergy Therapeutics, LtdAbstract Background Subcutaneous allergen immunotherapy (SCIT) is a well-documented treatment for allergic disease which involves injections of native allergen or modified (allergoid) extracts. The use of allergoid vaccines is a growing sector of the allergy immunotherapy market, associated with shorter-course therapy. The aim of this study was the structural and immunological characterisation of group 1 (Lol p 1) IgG-binding epitopes within a complex mix grass allergoid formulation containing rye grass. Methods HP-SEC was used to resolve a mix grass allergoid preparation of high molecular weight into several distinct fractions with defined molecular weight and elution profiles. Allergen verification of the HP-SEC allergoid fractions was confirmed by mass spectrometry analysis. IgE and IgG immunoreactivity of the allergoid preparations was explored and Lol p 1 specific IgG-binding epitopes mapped by SPOT synthesis technology (PepSpot™) with structural analysis based on a Lol p 1 homology model. Results Grass specific IgE reactivity of the mix grass modified extract (allergoid) was diminished in comparison with the mix grass native extract. A difference in IgG profiles was observed between an intact mix grass allergoid preparation and HP-SEC allergoid fractions, which indicated enhancement of accessible reactive IgG epitopes across size distribution profiles of the mix grass allergoid formulation. Detailed analysis of the epitope specificity showed retention of six Lol p 1 IgG-binding epitopes in the mix grass modified extract. Conclusion The structural and immunological changes which take place following the grass allergen modification process was further unravelled revealing distinct IgG immunological profiles. All epitopes were mapped on the solvent exposed area of Lol p 1 homology model accessible for IgG binding. One of the epitopes was identified as an ‘immunodominant’ Lol p 1 IgG-binding epitope (62-IFKDGRGCGSCFEIK-76) and classified as a novel epitope. The results from this study support the concept that modification allows shorter-course therapy options as a result of providing an IgG epitope repertoire important for efficacy. Additionally, the work paves the way to help further develop methods for standardising allergoid platforms.http://link.springer.com/article/10.1186/s40413-017-0146-3ImmunotherapyAllergenComplex grassLol p 1AllergoidEpitope |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
S. Starchenka A. J. Bell J. Mwange M. A. Skinner M. D. Heath |
spellingShingle |
S. Starchenka A. J. Bell J. Mwange M. A. Skinner M. D. Heath Molecular fingerprinting of complex grass allergoids: size assessments reveal new insights in epitope repertoires and functional capacities World Allergy Organization Journal Immunotherapy Allergen Complex grass Lol p 1 Allergoid Epitope |
author_facet |
S. Starchenka A. J. Bell J. Mwange M. A. Skinner M. D. Heath |
author_sort |
S. Starchenka |
title |
Molecular fingerprinting of complex grass allergoids: size assessments reveal new insights in epitope repertoires and functional capacities |
title_short |
Molecular fingerprinting of complex grass allergoids: size assessments reveal new insights in epitope repertoires and functional capacities |
title_full |
Molecular fingerprinting of complex grass allergoids: size assessments reveal new insights in epitope repertoires and functional capacities |
title_fullStr |
Molecular fingerprinting of complex grass allergoids: size assessments reveal new insights in epitope repertoires and functional capacities |
title_full_unstemmed |
Molecular fingerprinting of complex grass allergoids: size assessments reveal new insights in epitope repertoires and functional capacities |
title_sort |
molecular fingerprinting of complex grass allergoids: size assessments reveal new insights in epitope repertoires and functional capacities |
publisher |
Elsevier |
series |
World Allergy Organization Journal |
issn |
1939-4551 |
publishDate |
2017-04-01 |
description |
Abstract Background Subcutaneous allergen immunotherapy (SCIT) is a well-documented treatment for allergic disease which involves injections of native allergen or modified (allergoid) extracts. The use of allergoid vaccines is a growing sector of the allergy immunotherapy market, associated with shorter-course therapy. The aim of this study was the structural and immunological characterisation of group 1 (Lol p 1) IgG-binding epitopes within a complex mix grass allergoid formulation containing rye grass. Methods HP-SEC was used to resolve a mix grass allergoid preparation of high molecular weight into several distinct fractions with defined molecular weight and elution profiles. Allergen verification of the HP-SEC allergoid fractions was confirmed by mass spectrometry analysis. IgE and IgG immunoreactivity of the allergoid preparations was explored and Lol p 1 specific IgG-binding epitopes mapped by SPOT synthesis technology (PepSpot™) with structural analysis based on a Lol p 1 homology model. Results Grass specific IgE reactivity of the mix grass modified extract (allergoid) was diminished in comparison with the mix grass native extract. A difference in IgG profiles was observed between an intact mix grass allergoid preparation and HP-SEC allergoid fractions, which indicated enhancement of accessible reactive IgG epitopes across size distribution profiles of the mix grass allergoid formulation. Detailed analysis of the epitope specificity showed retention of six Lol p 1 IgG-binding epitopes in the mix grass modified extract. Conclusion The structural and immunological changes which take place following the grass allergen modification process was further unravelled revealing distinct IgG immunological profiles. All epitopes were mapped on the solvent exposed area of Lol p 1 homology model accessible for IgG binding. One of the epitopes was identified as an ‘immunodominant’ Lol p 1 IgG-binding epitope (62-IFKDGRGCGSCFEIK-76) and classified as a novel epitope. The results from this study support the concept that modification allows shorter-course therapy options as a result of providing an IgG epitope repertoire important for efficacy. Additionally, the work paves the way to help further develop methods for standardising allergoid platforms. |
topic |
Immunotherapy Allergen Complex grass Lol p 1 Allergoid Epitope |
url |
http://link.springer.com/article/10.1186/s40413-017-0146-3 |
work_keys_str_mv |
AT sstarchenka molecularfingerprintingofcomplexgrassallergoidssizeassessmentsrevealnewinsightsinepitoperepertoiresandfunctionalcapacities AT ajbell molecularfingerprintingofcomplexgrassallergoidssizeassessmentsrevealnewinsightsinepitoperepertoiresandfunctionalcapacities AT jmwange molecularfingerprintingofcomplexgrassallergoidssizeassessmentsrevealnewinsightsinepitoperepertoiresandfunctionalcapacities AT maskinner molecularfingerprintingofcomplexgrassallergoidssizeassessmentsrevealnewinsightsinepitoperepertoiresandfunctionalcapacities AT mdheath molecularfingerprintingofcomplexgrassallergoidssizeassessmentsrevealnewinsightsinepitoperepertoiresandfunctionalcapacities |
_version_ |
1725244084034994176 |