Toric extremal Kähler-Ricci solitons are Kähler-Einstein
In this short note, we prove that a Calabi extremal Kähler-Ricci soliton on a compact toric Kähler manifold is Einstein. This settles for the class of toric manifolds a general problem stated by the authors that they solved only under some curvature assumptions.
Main Authors: | Calamai Simone, Petrecca David |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2017-12-01
|
Series: | Complex Manifolds |
Subjects: | |
Online Access: | https://doi.org/10.1515/coma-2017-0012 |
Similar Items
-
Sur la géométrie des solitons de Kähler-Ricci dans les variétés toriques et horosphériques
by: Delgove, François
Published: (2019) -
On Kähler-like and G-Kähler-like almost Hermitian manifolds
by: Kawamura Masaya
Published: (2020-04-01) -
Ricci solitons on para-Kähler manifolds
by: Sunil Kumar Yadav
Published: (2019-12-01) -
On the Kähler-likeness on almost Hermitian manifolds
by: Kawamura Masaya
Published: (2019-01-01) -
Kähler-Einstein metrics: Old and New
by: Angella Daniele, et al.
Published: (2017-12-01)