Thermal Boundary Layer in Flow due to an Exponentially Stretching Surface with an Exponentially Moving Free Stream

A numerical investigation is made to study the thermal boundary layer for flow of incompressible Newtonian fluid over an exponentially stretching sheet with an exponentially moving free stream. The governing partial differential equations are transformed into self-similar ordinary differential equat...

Full description

Bibliographic Details
Main Authors: Krishnendu Bhattacharyya, G. C. Layek
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Modelling and Simulation in Engineering
Online Access:http://dx.doi.org/10.1155/2014/785049
Description
Summary:A numerical investigation is made to study the thermal boundary layer for flow of incompressible Newtonian fluid over an exponentially stretching sheet with an exponentially moving free stream. The governing partial differential equations are transformed into self-similar ordinary differential equations using similarity transformations in exponential forms. Then those are solved numerically by shooting technique using Runge-Kutta method. The study reveals that the momentum boundary layer thickness for this flow is considerably smaller than the linear stagnation point flow past a linearly stretching sheet. The momentum and thermal boundary layer thicknesses reduce when the velocity ratio parameter increases. For the temperature distribution, in addition to the heat transfer from the sheet, the heat absorption at the sheet also occurs in certain situations and both heat transfer and absorption increase with the velocity ratio parameter and the Prandtl number. The temperature inside the boundary layer significantly decreases with higher values of velocity ratio parameter and the Prandtl number.
ISSN:1687-5591
1687-5605