Overburden Migration and Failure Characteristics in Mining Shallow Buried Coal Seam with Thick Loose Layer

Quite a number of shallow buried coal seams (SBCS) are distributed in China. The overburden is easily damaged due to the mining of SBCS, resulting in water resources loss and surface damage. Taking 12403 working face of Wulanmulun coal mine in Shendong mining area as an example, this paper analyzed...

Full description

Bibliographic Details
Main Authors: Zhuhe Xu, Quansheng Li, Xiaobin Li
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2020/9024751
Description
Summary:Quite a number of shallow buried coal seams (SBCS) are distributed in China. The overburden is easily damaged due to the mining of SBCS, resulting in water resources loss and surface damage. Taking 12403 working face of Wulanmulun coal mine in Shendong mining area as an example, this paper analyzed the overburden migration and failure characteristics after mining SBCS with thick loose layer based on actual measurement data and simulation results. The results show that the subsidence of strata in caving zone has no skewness feature along strike direction, while the subsidence of strata in fracture zone and bending subsidence zone shows skewness subsidence phenomenon. An interface exists in the overburden, and the movements of upper and lower strata at the interface have different characteristics. The cracks penetrating the whole strata exist in bedrock, not in aeolian sand. The height of water flowing fracture zone is 35.74 m–62.89 m according to the loss of fluid in the borehole and consistent with the results of numerical simulation and similar simulation. This study can provide a reference for the prediction of the height of water flowing fracture zone and the overburden migration in mining SBCS.
ISSN:1687-8434
1687-8442