Training Sequence Design of TDS-OFDM Signal in Joint Radar and Communication System

In the joint radar and communication system, using orthogonal frequency division multiplexing (OFDM) signals, cyclic prefix (CP) and pilots lead to the problem of high peak at the sidelobe (PSL) level in autocorrelation function (ACF), which deteriorates the radar detection performance seriously. To...

Full description

Bibliographic Details
Main Authors: Jiajun Zuo, Ruijuan Yang, Shaohua Luo, Xiaobai Li
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2019/3914314
Description
Summary:In the joint radar and communication system, using orthogonal frequency division multiplexing (OFDM) signals, cyclic prefix (CP) and pilots lead to the problem of high peak at the sidelobe (PSL) level in autocorrelation function (ACF), which deteriorates the radar detection performance seriously. To solve this problem, first, a new RadCom signal based on time-domain synchronization OFDM (TDS-OFDM) was proposed. TDS-OFDM adopts training sequence (TS) for guard interval, as well as synchronization and channel estimation, so that CP and pilots can be avoided. And then, ambiguity function (AF) of TDS-OFDM RadCom signal was analyzed. Finally, TS are optimized to suppress PSL of TDS-OFDM signal and maintain the autocorrelation properties of TS simultaneously. The results show that the autocorrelation performance of designed TDS-OFDM RadCom signal is much better than that of CP-OFDM RadCom signal. Considering the importance of radar target detection, TDS-OFDM is more appropriate than CP-OFDM for the RadCom system.
ISSN:1024-123X
1563-5147