Protocatechualdehyde Inhibits the Osteoclast Differentiation of RAW264.7 and BMM Cells by Regulating NF-κB and MAPK Activity

Protocatechualdehyde (PCA), an important component of Salvia miltiorrhiza, has many activities, such as anti-inflammatory and antisepsis activities. However, the role of PCA in osteoclasts is not clear. We used RAW264.7 cells (a mouse leukemic monocyte/macrophage cell line) and bone marrow macrophag...

Full description

Bibliographic Details
Main Authors: Yunyun Qu, Xin Liu, Shuai Zong, Huanxin Sun, Shuang Liu, Yueran Zhao
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:BioMed Research International
Online Access:http://dx.doi.org/10.1155/2021/6108999
Description
Summary:Protocatechualdehyde (PCA), an important component of Salvia miltiorrhiza, has many activities, such as anti-inflammatory and antisepsis activities. However, the role of PCA in osteoclasts is not clear. We used RAW264.7 cells (a mouse leukemic monocyte/macrophage cell line) and bone marrow macrophages (BMMs) to probe the role of PCA in osteoclasts and the underlying mechanism. The effects of PCA on cell activity were evaluated with CCK-8 assays. TRAP staining detected mature osteoclasts. Corning Osteo Assay Surface plates were used to examine absorption. The levels of RNA and protein were analyzed, respectively, using RT-PCR and Western blotting. PCA (5 μg/ml) was not toxic to the two cell types but reduced the formation of osteoclasts and bone absorption. Furthermore, PCA restrained the expression of mRNAs encoding proteins associated with osteoclasts and reduced the phosphorylation of proteins in important signaling pathways. The results indicate that PCA inhibits osteoclast differentiation by suppressing NF-κB and MAPK activity.
ISSN:2314-6141