Superconductor–insulator transition in capacitively coupled superconducting nanowires

We investigate superconductor–insulator quantum phase transitions in ultrathin capacitively coupled superconducting nanowires with proliferating quantum phase slips. We derive a set of coupled Berezinskii–Kosterlitz–Thouless-like renormalization group equations demonstrating that interaction between...

Full description

Bibliographic Details
Main Authors: Alex Latyshev, Andrew G. Semenov, Andrei D. Zaikin
Format: Article
Language:English
Published: Beilstein-Institut 2020-09-01
Series:Beilstein Journal of Nanotechnology
Subjects:
Online Access:https://doi.org/10.3762/bjnano.11.124
Description
Summary:We investigate superconductor–insulator quantum phase transitions in ultrathin capacitively coupled superconducting nanowires with proliferating quantum phase slips. We derive a set of coupled Berezinskii–Kosterlitz–Thouless-like renormalization group equations demonstrating that interaction between quantum phase slips in one of the wires gets modified due to the effect of plasma modes propagating in another wire. As a result, the superconductor–insulator phase transition in each of the wires is controlled not only by its own parameters but also by those of the neighboring wire as well as by mutual capacitance. We argue that superconducting nanowires with properly chosen parameters may turn insulating once they are brought sufficiently close to each other.
ISSN:2190-4286