Elliptic problems with singular nonlinearities of indefinite sign

Let $\Omega$ be a bounded domain in $\mathbb{R}^n$ with $C^{1,1}$ boundary. We consider problems of the form $-\Delta u=\chi_{\left\{ u>0\right\}}\left( au^{-\alpha}-g\left( .,u\right) \right) $ in $\Omega,$ $u=0$ on $\partial\Omega,$ $u\geq0$ in $\Omega,$ where $\Omega$ is a bounded dom...

Full description

Bibliographic Details
Main Author: Tomas Godoy
Format: Article
Language:English
Published: AIMS Press 2020-02-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/10.3934/math.2020120/fulltext.html
id doaj-c92a231cc0b742fb848b80ee9c52405d
record_format Article
spelling doaj-c92a231cc0b742fb848b80ee9c52405d2020-11-25T02:38:29ZengAIMS PressAIMS Mathematics2473-69882020-02-01531779179810.3934/math.2020120Elliptic problems with singular nonlinearities of indefinite signTomas Godoy0Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba, ArgentinaLet $\Omega$ be a bounded domain in $\mathbb{R}^n$ with $C^{1,1}$ boundary. We consider problems of the form $-\Delta u=\chi_{\left\{ u>0\right\}}\left( au^{-\alpha}-g\left( .,u\right) \right) $ in $\Omega,$ $u=0$ on $\partial\Omega,$ $u\geq0$ in $\Omega,$ where $\Omega$ is a bounded domain in $\mathbb{R}^n$, $0\not \equiv a\in L^{\infty}\left( \Omega\right) ,$ $\alpha\in\left( 0,1\right) ,$ and $g:\Omega\times\left[ 0,\infty\right) \rightarrow\mathbb{R}$ is a nonnegative Carathéodory function. We prove, under suitable assumptions on $a$ and $g,$ the existence of nontrivial and nonnegative weak solutions $u\in H_{0}^{1}\left( \Omega\right) \cap L^{\infty}\left( \Omega\right) $ of the stated problem. Under additional assumptions, the positivity, $a.e.$ in $\Omega,$ of the found solution $u$, is also proved.https://www.aimspress.com/article/10.3934/math.2020120/fulltext.htmlsingular elliptic problemsnonnegative solutionssub and supersolutions
collection DOAJ
language English
format Article
sources DOAJ
author Tomas Godoy
spellingShingle Tomas Godoy
Elliptic problems with singular nonlinearities of indefinite sign
AIMS Mathematics
singular elliptic problems
nonnegative solutions
sub and supersolutions
author_facet Tomas Godoy
author_sort Tomas Godoy
title Elliptic problems with singular nonlinearities of indefinite sign
title_short Elliptic problems with singular nonlinearities of indefinite sign
title_full Elliptic problems with singular nonlinearities of indefinite sign
title_fullStr Elliptic problems with singular nonlinearities of indefinite sign
title_full_unstemmed Elliptic problems with singular nonlinearities of indefinite sign
title_sort elliptic problems with singular nonlinearities of indefinite sign
publisher AIMS Press
series AIMS Mathematics
issn 2473-6988
publishDate 2020-02-01
description Let $\Omega$ be a bounded domain in $\mathbb{R}^n$ with $C^{1,1}$ boundary. We consider problems of the form $-\Delta u=\chi_{\left\{ u>0\right\}}\left( au^{-\alpha}-g\left( .,u\right) \right) $ in $\Omega,$ $u=0$ on $\partial\Omega,$ $u\geq0$ in $\Omega,$ where $\Omega$ is a bounded domain in $\mathbb{R}^n$, $0\not \equiv a\in L^{\infty}\left( \Omega\right) ,$ $\alpha\in\left( 0,1\right) ,$ and $g:\Omega\times\left[ 0,\infty\right) \rightarrow\mathbb{R}$ is a nonnegative Carathéodory function. We prove, under suitable assumptions on $a$ and $g,$ the existence of nontrivial and nonnegative weak solutions $u\in H_{0}^{1}\left( \Omega\right) \cap L^{\infty}\left( \Omega\right) $ of the stated problem. Under additional assumptions, the positivity, $a.e.$ in $\Omega,$ of the found solution $u$, is also proved.
topic singular elliptic problems
nonnegative solutions
sub and supersolutions
url https://www.aimspress.com/article/10.3934/math.2020120/fulltext.html
work_keys_str_mv AT tomasgodoy ellipticproblemswithsingularnonlinearitiesofindefinitesign
_version_ 1724790654249205760