Elliptic problems with singular nonlinearities of indefinite sign
Let $\Omega$ be a bounded domain in $\mathbb{R}^n$ with $C^{1,1}$ boundary. We consider problems of the form $-\Delta u=\chi_{\left\{ u>0\right\}}\left( au^{-\alpha}-g\left( .,u\right) \right) $ in $\Omega,$ $u=0$ on $\partial\Omega,$ $u\geq0$ in $\Omega,$ where $\Omega$ is a bounded dom...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2020-02-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/10.3934/math.2020120/fulltext.html |
id |
doaj-c92a231cc0b742fb848b80ee9c52405d |
---|---|
record_format |
Article |
spelling |
doaj-c92a231cc0b742fb848b80ee9c52405d2020-11-25T02:38:29ZengAIMS PressAIMS Mathematics2473-69882020-02-01531779179810.3934/math.2020120Elliptic problems with singular nonlinearities of indefinite signTomas Godoy0Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba, ArgentinaLet $\Omega$ be a bounded domain in $\mathbb{R}^n$ with $C^{1,1}$ boundary. We consider problems of the form $-\Delta u=\chi_{\left\{ u>0\right\}}\left( au^{-\alpha}-g\left( .,u\right) \right) $ in $\Omega,$ $u=0$ on $\partial\Omega,$ $u\geq0$ in $\Omega,$ where $\Omega$ is a bounded domain in $\mathbb{R}^n$, $0\not \equiv a\in L^{\infty}\left( \Omega\right) ,$ $\alpha\in\left( 0,1\right) ,$ and $g:\Omega\times\left[ 0,\infty\right) \rightarrow\mathbb{R}$ is a nonnegative Carathéodory function. We prove, under suitable assumptions on $a$ and $g,$ the existence of nontrivial and nonnegative weak solutions $u\in H_{0}^{1}\left( \Omega\right) \cap L^{\infty}\left( \Omega\right) $ of the stated problem. Under additional assumptions, the positivity, $a.e.$ in $\Omega,$ of the found solution $u$, is also proved.https://www.aimspress.com/article/10.3934/math.2020120/fulltext.htmlsingular elliptic problemsnonnegative solutionssub and supersolutions |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Tomas Godoy |
spellingShingle |
Tomas Godoy Elliptic problems with singular nonlinearities of indefinite sign AIMS Mathematics singular elliptic problems nonnegative solutions sub and supersolutions |
author_facet |
Tomas Godoy |
author_sort |
Tomas Godoy |
title |
Elliptic problems with singular nonlinearities of indefinite sign |
title_short |
Elliptic problems with singular nonlinearities of indefinite sign |
title_full |
Elliptic problems with singular nonlinearities of indefinite sign |
title_fullStr |
Elliptic problems with singular nonlinearities of indefinite sign |
title_full_unstemmed |
Elliptic problems with singular nonlinearities of indefinite sign |
title_sort |
elliptic problems with singular nonlinearities of indefinite sign |
publisher |
AIMS Press |
series |
AIMS Mathematics |
issn |
2473-6988 |
publishDate |
2020-02-01 |
description |
Let $\Omega$ be a bounded domain in $\mathbb{R}^n$ with $C^{1,1}$ boundary. We consider problems of the form $-\Delta u=\chi_{\left\{ u>0\right\}}\left( au^{-\alpha}-g\left( .,u\right) \right) $ in $\Omega,$ $u=0$ on $\partial\Omega,$ $u\geq0$ in $\Omega,$ where $\Omega$ is a bounded domain in $\mathbb{R}^n$, $0\not \equiv a\in L^{\infty}\left( \Omega\right) ,$ $\alpha\in\left( 0,1\right) ,$ and $g:\Omega\times\left[ 0,\infty\right) \rightarrow\mathbb{R}$ is a nonnegative Carathéodory function. We prove, under suitable assumptions on $a$ and $g,$ the existence of nontrivial and nonnegative weak solutions $u\in H_{0}^{1}\left( \Omega\right) \cap L^{\infty}\left( \Omega\right) $ of the stated problem. Under additional assumptions, the positivity, $a.e.$ in $\Omega,$ of the found solution $u$, is also proved. |
topic |
singular elliptic problems nonnegative solutions sub and supersolutions |
url |
https://www.aimspress.com/article/10.3934/math.2020120/fulltext.html |
work_keys_str_mv |
AT tomasgodoy ellipticproblemswithsingularnonlinearitiesofindefinitesign |
_version_ |
1724790654249205760 |