Effect of Two- and Three-Dimensionally Designed Guide Vanes with Different Camber Length on Static Pressure Recovery of a Wall-Mounted Axial Fan

This study was based on a numerical effort to use the motor support (prop) as a guide vane when the motor of a wall-mounted axial fan was located at the fan outlet while maintaining the structural and spatial advantage. The design for the guide vane followed two- and three-dimensional methods. The i...

Full description

Bibliographic Details
Main Authors: Yong-In Kim, Yong-Uk Choi, Cherl-Young Jeong, Kyoung-Yong Lee, Young-Seok Choi
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Processes
Subjects:
Online Access:https://www.mdpi.com/2227-9717/9/9/1595
Description
Summary:This study was based on a numerical effort to use the motor support (prop) as a guide vane when the motor of a wall-mounted axial fan was located at the fan outlet while maintaining the structural and spatial advantage. The design for the guide vane followed two- and three-dimensional methods. The inlet vane angle, meridional length (total), and meridional length with a vane angle of zero (0) degrees (linear) were considered as design variables. At the design and some low flow rate points, the 2D design offered the most favorable performance when the meridional length with a vane angle of zero (0) degrees (linear) was 30% based on total length, and was the worst for 70%. The 3D design method applied in this study did not outperform the 2D design. In the 2D design concept, averaging the flow angle for the entire span at the design flow rate could ensure a better pressure rise over a more comprehensive flow rate range than weighting the flow angle for a specific span. In addition, the numerical results were validated through an experimental test, with an important discussion of the swirl (dynamic pressure) component. The influence of the inlet motor and turbulence model are presented as a previous confirmation.
ISSN:2227-9717