Oriented Algebras and the Hochschild Cohomology Group

Koam and Pirashivili developed the equivariant version of Hochschild cohomology by mixing the standard chain complexes computing group with associative algebra cohomologies to obtain the bicomplex <inline-formula> <math display="inline"> <semantics> <mrow> <mover...

Full description

Bibliographic Details
Main Author: Ali N. A. Koam
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/6/11/237
Description
Summary:Koam and Pirashivili developed the equivariant version of Hochschild cohomology by mixing the standard chain complexes computing group with associative algebra cohomologies to obtain the bicomplex <inline-formula> <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>C</mi> <mo stretchy="false">&#732;</mo> </mover> <msubsup> <mrow></mrow> <mi>G</mi> <mo>*</mo> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>X</mi> <mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. In this paper, we form a new bicomplex <inline-formula> <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>F</mi> <mo stretchy="false">˘</mo> </mover> <msubsup> <mrow></mrow> <mi>G</mi> <mo>*</mo> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> by deleting the first column and the first row and reindexing. We show that <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mover accent="true"> <mi mathvariant="script">H</mi> <mo stretchy="false">˘</mo> </mover> <mi>G</mi> <mn>1</mn> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> classifies the singular extensions of oriented algebras.
ISSN:2227-7390