The effect of active hand movement on visually perceived depth direction.

This study investigated the effect of active hand movement on the perception of 3-D depth change. In Experiment 1, the 3-D height of an object synchronously changed with the participant's hand movement, but the 3-D height of the object was incongruent with the distance moved by the hand. The re...

Full description

Bibliographic Details
Main Author: Hiroyuki Umemura
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2021-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0245000
Description
Summary:This study investigated the effect of active hand movement on the perception of 3-D depth change. In Experiment 1, the 3-D height of an object synchronously changed with the participant's hand movement, but the 3-D height of the object was incongruent with the distance moved by the hand. The results showed no effect of active hand movement on perceived depth. This was inconsistent with the results of a previous study conducted in a similar setting with passive hand movement. It was speculated that this contradiction appeared because the conflict between the distance moved by the hand and visual depth changes were more easily detected in the active movement situation. Therefore, it was assumed that in a condition where this conflict was hard to detect, active hand movement might affect visual depth perception. To examine this hypothesis, Experiment 2 examined whether information from hand movement would resolve the ambiguity in the depth direction of a shaded visual shape. In this experiment, the distance moved by the hand could (logically) accord with either of two depth directions (concave or convex). Moreover, the discrepancy in the distances between visual and haptic perception could be ambiguous because shading cues are unreliable in estimating absolute depth. The results showed that perceived depth directions were affected by the direction of active hand movement, thus supporting the hypothesis. Based on these results, simulations based on a causal inference model were performed, and it was found that these simulations could replicate the qualitative aspects of the experimental results.
ISSN:1932-6203