Phase transformations in a heterogeneous Ti-xNb-7Zr-0.8O alloy prepared by a field-assisted sintering technique

Biomedical metastable alloy Ti-xNb-7Zr-0.8O with a compositional gradient of Nb was prepared from elemental powders by a field-assisted sintering technique (FAST). The aim was to investigate phase transformations over a wide range of compositions, facilitating the designing of biomedical Ti alloys....

Full description

Bibliographic Details
Main Authors: Jiří Kozlík, Dalibor Preisler, Josef Stráský, Jozef Veselý, Anna Veverková, Tomáš Chráska, Miloš Janeček
Format: Article
Language:English
Published: Elsevier 2021-01-01
Series:Materials & Design
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0264127520308443
Description
Summary:Biomedical metastable alloy Ti-xNb-7Zr-0.8O with a compositional gradient of Nb was prepared from elemental powders by a field-assisted sintering technique (FAST). The aim was to investigate phase transformations over a wide range of compositions, facilitating the designing of biomedical Ti alloys. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) investigations revealed that Nb-rich regions retained the β phase, surrounded by transition region consisting of the β and ω phases, while Nb-lean regions consisted of the α and β phases. The Nb concentration, above which formation of the ω phase occurs during cooling instead of the α phase, was determined to be 22 wt%, an important parameter for the low-modulus alloy design. The paper validates the viability of using FAST to prepare heterogeneous Ti alloys permitting to study microstructure over a wide range of compositions. This technique could also be readily used as a high-throughput method for designing other alloy systems.The experimental results were supplemented by calculation of Gibbs energy curves and schematic phase diagrams, which allowed to explain a competition between α and ω formation depending on alloy composition. Such semi-empirical approach can serve as a useful tool for general alloy design, in particular for biomedical Ti alloys.
ISSN:0264-1275