Selection of Reliable Reference Genes for Real-time qRT-PCR Analysis of Zi Geese () Gene Expression

Zi geese (Anser anser domestica) belong to the white geese and are excellent layers with a superior feed-to-egg conversion ratio. Quantitative gene expression analysis, such as Real-time qRT-PCR, will provide a good understanding of ovarian function during egg-laying and consequently improve egg pro...

Full description

Bibliographic Details
Main Authors: Hong Ji, Jianfa Wang, Juxiong Liu, Jingru Guo, Zhongwei Wang, Xu Zhang, Li Guo, Huanmin Yang
Format: Article
Language:English
Published: Asian-Australasian Association of Animal Production Societies 2013-03-01
Series:Asian-Australasian Journal of Animal Sciences
Subjects:
Online Access:http://www.ajas.info/upload/pdf/ajas-26-3-423-16.pdf
Description
Summary:Zi geese (Anser anser domestica) belong to the white geese and are excellent layers with a superior feed-to-egg conversion ratio. Quantitative gene expression analysis, such as Real-time qRT-PCR, will provide a good understanding of ovarian function during egg-laying and consequently improve egg production. However, we still don’t know what reference genes in geese, which show stable expression, should be used for such quantitative analysis. In order to reveal such reference genes, the stability of seven genes were tested in five tissues of Zi geese. Methodology/Principal Findings: The relative transcription levels of genes encoding hypoxanthine guanine phosphoribosyl transferase 1 (HPRT1), β-actin (ACTB), β-tubulin (TUB), glyceraldehyde-3-phosphate-dehydrogenase (GADPH), succinate dehydrogenase flavoprotein (SDH), 28S rRNA (28S) and 18S rRNA (18S) have been quantified in heart, liver, kidney, muscle and ovary in Zi geese respectively at different developmental stages (1 d, 2, 4, 6 and 8 months). The expression stability of these genes was analyzed using geNorm, NormFinder and BestKeeper software. Conclusions: The expression of 28S in heart, GAPDH in liver and ovary, ACTB in kidney and HPRT1 in muscle are the most stable genes as identified by the three different analysis methods. Thus, these genes are recommended for use as candidate reference genes to compare mRNA transcription in various developmental stages of geese.
ISSN:1011-2367
1976-5517