Automatic Emergency Braking (AEB) System Impact on Fatality and Injury Reduction in China
The automatic emergency braking (AEB) system is an effective intelligent vehicle active safety system for avoiding certain types of collisions. This study develops a national-level safety impact evaluation model for this intelligent vehicle function, including the potential maximum impact and realis...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-02-01
|
Series: | International Journal of Environmental Research and Public Health |
Subjects: | |
Online Access: | https://www.mdpi.com/1660-4601/17/3/917 |
id |
doaj-cac96ff8458f4348b622727eabfadb28 |
---|---|
record_format |
Article |
spelling |
doaj-cac96ff8458f4348b622727eabfadb282020-11-25T02:05:45ZengMDPI AGInternational Journal of Environmental Research and Public Health1660-46012020-02-0117391710.3390/ijerph17030917ijerph17030917Automatic Emergency Braking (AEB) System Impact on Fatality and Injury Reduction in ChinaHong Tan0Fuquan Zhao1Han Hao2Zongwei Liu3Amer Ahmad Amer4Hassan Babiker5State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, ChinaState Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, ChinaState Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, ChinaState Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, ChinaResearch and Development Center, Saudi Aramco, Dhahran 31311, Saudi ArabiaResearch and Development Center, Saudi Aramco, Dhahran 31311, Saudi ArabiaThe automatic emergency braking (AEB) system is an effective intelligent vehicle active safety system for avoiding certain types of collisions. This study develops a national-level safety impact evaluation model for this intelligent vehicle function, including the potential maximum impact and realistic impact. The evaluation model was firstly applied in China to provide insights into Chinese policymaking. Road traffic fatality and severe injury trends, the proportion of different collision types, the effectiveness of collision avoidance, and the AEB market penetration rates are considered in the potential maximum impact scenario. Furthermore, the AEB activation rate and the technology’s technical limitations, including its effectiveness in different weather, light, and speed conditions, are discussed in the realistic scenario. With a 100% market penetration rate, fatalities could be reduced by 13.2%, and injuries could be reduced by 9.1%. Based on China’s policy, the market penetration rate of intelligent vehicles with AEB is predicted to be 34.0% in 2025 and 60.3% in 2030. With this large market penetration rate increase of AEB, the reductions in fatalities and severe injuries are 903–2309 and 2025–5055 in 2025; and 1483–3789 and 3895–7835 in 2030, respectively. Considering AEB’s activation rate and its three main limitations, the adjusted realistic result is approximately 2/5 of the potential maximum result.https://www.mdpi.com/1660-4601/17/3/917intelligent transportation and traffic safetyautomatic drivingfatality and injuryautomatic emergency braking |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hong Tan Fuquan Zhao Han Hao Zongwei Liu Amer Ahmad Amer Hassan Babiker |
spellingShingle |
Hong Tan Fuquan Zhao Han Hao Zongwei Liu Amer Ahmad Amer Hassan Babiker Automatic Emergency Braking (AEB) System Impact on Fatality and Injury Reduction in China International Journal of Environmental Research and Public Health intelligent transportation and traffic safety automatic driving fatality and injury automatic emergency braking |
author_facet |
Hong Tan Fuquan Zhao Han Hao Zongwei Liu Amer Ahmad Amer Hassan Babiker |
author_sort |
Hong Tan |
title |
Automatic Emergency Braking (AEB) System Impact on Fatality and Injury Reduction in China |
title_short |
Automatic Emergency Braking (AEB) System Impact on Fatality and Injury Reduction in China |
title_full |
Automatic Emergency Braking (AEB) System Impact on Fatality and Injury Reduction in China |
title_fullStr |
Automatic Emergency Braking (AEB) System Impact on Fatality and Injury Reduction in China |
title_full_unstemmed |
Automatic Emergency Braking (AEB) System Impact on Fatality and Injury Reduction in China |
title_sort |
automatic emergency braking (aeb) system impact on fatality and injury reduction in china |
publisher |
MDPI AG |
series |
International Journal of Environmental Research and Public Health |
issn |
1660-4601 |
publishDate |
2020-02-01 |
description |
The automatic emergency braking (AEB) system is an effective intelligent vehicle active safety system for avoiding certain types of collisions. This study develops a national-level safety impact evaluation model for this intelligent vehicle function, including the potential maximum impact and realistic impact. The evaluation model was firstly applied in China to provide insights into Chinese policymaking. Road traffic fatality and severe injury trends, the proportion of different collision types, the effectiveness of collision avoidance, and the AEB market penetration rates are considered in the potential maximum impact scenario. Furthermore, the AEB activation rate and the technology’s technical limitations, including its effectiveness in different weather, light, and speed conditions, are discussed in the realistic scenario. With a 100% market penetration rate, fatalities could be reduced by 13.2%, and injuries could be reduced by 9.1%. Based on China’s policy, the market penetration rate of intelligent vehicles with AEB is predicted to be 34.0% in 2025 and 60.3% in 2030. With this large market penetration rate increase of AEB, the reductions in fatalities and severe injuries are 903–2309 and 2025–5055 in 2025; and 1483–3789 and 3895–7835 in 2030, respectively. Considering AEB’s activation rate and its three main limitations, the adjusted realistic result is approximately 2/5 of the potential maximum result. |
topic |
intelligent transportation and traffic safety automatic driving fatality and injury automatic emergency braking |
url |
https://www.mdpi.com/1660-4601/17/3/917 |
work_keys_str_mv |
AT hongtan automaticemergencybrakingaebsystemimpactonfatalityandinjuryreductioninchina AT fuquanzhao automaticemergencybrakingaebsystemimpactonfatalityandinjuryreductioninchina AT hanhao automaticemergencybrakingaebsystemimpactonfatalityandinjuryreductioninchina AT zongweiliu automaticemergencybrakingaebsystemimpactonfatalityandinjuryreductioninchina AT amerahmadamer automaticemergencybrakingaebsystemimpactonfatalityandinjuryreductioninchina AT hassanbabiker automaticemergencybrakingaebsystemimpactonfatalityandinjuryreductioninchina |
_version_ |
1724937060643504128 |