Two-Pole Structures in QCD: Facts, Not Fantasy!

The two-pole structure refers to the fact that particular single states in the spectrum as listed in the PDG tables are often two states. The story began with the <inline-formula> <math display="inline"> <semantics> <mrow> <mi>Λ</mi> <mo>(</mo&g...

Full description

Bibliographic Details
Main Author: Ulf-G. Meißner
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/6/981
id doaj-caf5bb89c40842188b4d3e818f9e0c59
record_format Article
spelling doaj-caf5bb89c40842188b4d3e818f9e0c592020-11-25T03:41:05ZengMDPI AGSymmetry2073-89942020-06-011298198110.3390/sym12060981Two-Pole Structures in QCD: Facts, Not Fantasy!Ulf-G. Meißner0Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, GermanyThe two-pole structure refers to the fact that particular single states in the spectrum as listed in the PDG tables are often two states. The story began with the <inline-formula> <math display="inline"> <semantics> <mrow> <mi>Λ</mi> <mo>(</mo> <mn>1405</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, when in 2001, using unitarized chiral perturbation theory, it was observed that there are two poles in the complex plane, one close to the <inline-formula> <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>K</mi> <mo>¯</mo> </mover> <mi>p</mi> </mrow> </semantics> </math> </inline-formula> and the other close to the <inline-formula> <math display="inline"> <semantics> <mrow> <mi>π</mi> <mi>Σ</mi> </mrow> </semantics> </math> </inline-formula> threshold. This was later understood combining the SU(3) limit and group-theoretical arguments. Different unitarization approaches that all lead to the two-pole structure have been considered in the mean time, showing some spread in the pole positions. This fact is now part of the PDG book, although it is not yet listed in the summary tables. Here, I discuss the open ends and critically review approaches that cannot deal with this issue. In the meson sector, some excited charm mesons are good candidates for such a two-pole structure. Next, I consider in detail the <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>D</mi> <mn>0</mn> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mn>2300</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, which is another candidate for this scenario. Combining lattice QCD with chiral unitary approaches in the finite volume, the precise data of the Hadron Spectrum Collaboration for coupled-channel <inline-formula> <math display="inline"> <semantics> <mrow> <mi>D</mi> <mi>π</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>D</mi> <mi>η</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>D</mi> <mi>s</mi> </msub> <mover accent="true"> <mi>K</mi> <mo>¯</mo> </mover> </mrow> </semantics> </math> </inline-formula> scattering in the isospin <inline-formula> <math display="inline"> <semantics> <mrow> <mi>I</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> channel indeed reveal its two-pole structure. Further states in the heavy meson sector with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>I</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> exhibiting this phenomenon are predicted, especially in the beauty meson sector. I also discuss the relation of these two-pole structures and the possible molecular nature of the states under consideration.https://www.mdpi.com/2073-8994/12/6/981Chiral symmetrycoupled channelshadron spectrumlattice QCDchiral perturbation theoryunitarization
collection DOAJ
language English
format Article
sources DOAJ
author Ulf-G. Meißner
spellingShingle Ulf-G. Meißner
Two-Pole Structures in QCD: Facts, Not Fantasy!
Symmetry
Chiral symmetry
coupled channels
hadron spectrum
lattice QCD
chiral perturbation theory
unitarization
author_facet Ulf-G. Meißner
author_sort Ulf-G. Meißner
title Two-Pole Structures in QCD: Facts, Not Fantasy!
title_short Two-Pole Structures in QCD: Facts, Not Fantasy!
title_full Two-Pole Structures in QCD: Facts, Not Fantasy!
title_fullStr Two-Pole Structures in QCD: Facts, Not Fantasy!
title_full_unstemmed Two-Pole Structures in QCD: Facts, Not Fantasy!
title_sort two-pole structures in qcd: facts, not fantasy!
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2020-06-01
description The two-pole structure refers to the fact that particular single states in the spectrum as listed in the PDG tables are often two states. The story began with the <inline-formula> <math display="inline"> <semantics> <mrow> <mi>Λ</mi> <mo>(</mo> <mn>1405</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula>, when in 2001, using unitarized chiral perturbation theory, it was observed that there are two poles in the complex plane, one close to the <inline-formula> <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>K</mi> <mo>¯</mo> </mover> <mi>p</mi> </mrow> </semantics> </math> </inline-formula> and the other close to the <inline-formula> <math display="inline"> <semantics> <mrow> <mi>π</mi> <mi>Σ</mi> </mrow> </semantics> </math> </inline-formula> threshold. This was later understood combining the SU(3) limit and group-theoretical arguments. Different unitarization approaches that all lead to the two-pole structure have been considered in the mean time, showing some spread in the pole positions. This fact is now part of the PDG book, although it is not yet listed in the summary tables. Here, I discuss the open ends and critically review approaches that cannot deal with this issue. In the meson sector, some excited charm mesons are good candidates for such a two-pole structure. Next, I consider in detail the <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>D</mi> <mn>0</mn> <mo>*</mo> </msubsup> <mrow> <mo>(</mo> <mn>2300</mn> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, which is another candidate for this scenario. Combining lattice QCD with chiral unitary approaches in the finite volume, the precise data of the Hadron Spectrum Collaboration for coupled-channel <inline-formula> <math display="inline"> <semantics> <mrow> <mi>D</mi> <mi>π</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>D</mi> <mi>η</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>D</mi> <mi>s</mi> </msub> <mover accent="true"> <mi>K</mi> <mo>¯</mo> </mover> </mrow> </semantics> </math> </inline-formula> scattering in the isospin <inline-formula> <math display="inline"> <semantics> <mrow> <mi>I</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> channel indeed reveal its two-pole structure. Further states in the heavy meson sector with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>I</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> exhibiting this phenomenon are predicted, especially in the beauty meson sector. I also discuss the relation of these two-pole structures and the possible molecular nature of the states under consideration.
topic Chiral symmetry
coupled channels
hadron spectrum
lattice QCD
chiral perturbation theory
unitarization
url https://www.mdpi.com/2073-8994/12/6/981
work_keys_str_mv AT ulfgmeißner twopolestructuresinqcdfactsnotfantasy
_version_ 1724531871358910464