Electrical stimulation of inner retinal neurons in wild-type and retinally degenerate (rd/rd) mice.
Electrical stimulation of the retina following photoreceptor degeneration in diseases such as retinitis pigmentosa and age-related macular degeneration has become a promising therapeutic strategy for the restoration of vision. Many retinal neurons remain functional following photoreceptor degenerati...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2013-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3708954?pdf=render |
id |
doaj-cb44b06b8e2d4b2597b8ec50cf5edf30 |
---|---|
record_format |
Article |
spelling |
doaj-cb44b06b8e2d4b2597b8ec50cf5edf302020-11-25T00:47:26ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-0187e6888210.1371/journal.pone.0068882Electrical stimulation of inner retinal neurons in wild-type and retinally degenerate (rd/rd) mice.Morven A CameronGregg J SuaningNigel H LovellJohn W MorleyElectrical stimulation of the retina following photoreceptor degeneration in diseases such as retinitis pigmentosa and age-related macular degeneration has become a promising therapeutic strategy for the restoration of vision. Many retinal neurons remain functional following photoreceptor degeneration; however, the responses of the different classes of cells to electrical stimuli have not been fully investigated. Using whole-cell patch clamp electrophysiology in retinal slices we investigated the response to electrical stimulation of cells of the inner nuclear layer (INL), pre-synaptic to retinal ganglion cells, in wild-type and retinally degenerate (rd/rd) mice. The responses of these cells to electrical stimulation were extremely varied, with both extrinsic and intrinsic evoked responses observed. Further examination of the intrinsically evoked responses revealed direct activation of both voltage-gated Na(+) channels and K(+) channels. The expression of these channels, which is particularly varied between INL cells, and the stimulus intensity, appears to dictate the polarity of the eventual response. Retinally degenerate animals showed similar responses to electrical stimulation of the retina to those of the wild-type, but the relative representation of each response type differed. The most striking difference between genotypes was the existence of a large amplitude oscillation in the majority of INL cells in rd/rd mice (as previously reported) that impacted on the signal to noise ratio following electrical stimulation. This confounding oscillation may significantly reduce the efficacy of electrical stimulation of the degenerate retina, and a greater understanding of its origin will potentially enable it to be dampened or eliminated.http://europepmc.org/articles/PMC3708954?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Morven A Cameron Gregg J Suaning Nigel H Lovell John W Morley |
spellingShingle |
Morven A Cameron Gregg J Suaning Nigel H Lovell John W Morley Electrical stimulation of inner retinal neurons in wild-type and retinally degenerate (rd/rd) mice. PLoS ONE |
author_facet |
Morven A Cameron Gregg J Suaning Nigel H Lovell John W Morley |
author_sort |
Morven A Cameron |
title |
Electrical stimulation of inner retinal neurons in wild-type and retinally degenerate (rd/rd) mice. |
title_short |
Electrical stimulation of inner retinal neurons in wild-type and retinally degenerate (rd/rd) mice. |
title_full |
Electrical stimulation of inner retinal neurons in wild-type and retinally degenerate (rd/rd) mice. |
title_fullStr |
Electrical stimulation of inner retinal neurons in wild-type and retinally degenerate (rd/rd) mice. |
title_full_unstemmed |
Electrical stimulation of inner retinal neurons in wild-type and retinally degenerate (rd/rd) mice. |
title_sort |
electrical stimulation of inner retinal neurons in wild-type and retinally degenerate (rd/rd) mice. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2013-01-01 |
description |
Electrical stimulation of the retina following photoreceptor degeneration in diseases such as retinitis pigmentosa and age-related macular degeneration has become a promising therapeutic strategy for the restoration of vision. Many retinal neurons remain functional following photoreceptor degeneration; however, the responses of the different classes of cells to electrical stimuli have not been fully investigated. Using whole-cell patch clamp electrophysiology in retinal slices we investigated the response to electrical stimulation of cells of the inner nuclear layer (INL), pre-synaptic to retinal ganglion cells, in wild-type and retinally degenerate (rd/rd) mice. The responses of these cells to electrical stimulation were extremely varied, with both extrinsic and intrinsic evoked responses observed. Further examination of the intrinsically evoked responses revealed direct activation of both voltage-gated Na(+) channels and K(+) channels. The expression of these channels, which is particularly varied between INL cells, and the stimulus intensity, appears to dictate the polarity of the eventual response. Retinally degenerate animals showed similar responses to electrical stimulation of the retina to those of the wild-type, but the relative representation of each response type differed. The most striking difference between genotypes was the existence of a large amplitude oscillation in the majority of INL cells in rd/rd mice (as previously reported) that impacted on the signal to noise ratio following electrical stimulation. This confounding oscillation may significantly reduce the efficacy of electrical stimulation of the degenerate retina, and a greater understanding of its origin will potentially enable it to be dampened or eliminated. |
url |
http://europepmc.org/articles/PMC3708954?pdf=render |
work_keys_str_mv |
AT morvenacameron electricalstimulationofinnerretinalneuronsinwildtypeandretinallydegeneraterdrdmice AT greggjsuaning electricalstimulationofinnerretinalneuronsinwildtypeandretinallydegeneraterdrdmice AT nigelhlovell electricalstimulationofinnerretinalneuronsinwildtypeandretinallydegeneraterdrdmice AT johnwmorley electricalstimulationofinnerretinalneuronsinwildtypeandretinallydegeneraterdrdmice |
_version_ |
1725259949648379904 |