Microstructure and Properties of Mechanical Alloying Al-Zr Coating by High Current Pulsed Electron Beam Irradiation

The "HOPE-I" type high-current pulsed electron beam (HCPEB) equipment was used to irradiate the pure aluminum material with Zr coating preset by ball milling to realize the alloying of a Zr–Al coating surface. The microstructure and phase analysis were conducted by XRD, SEM, and TEM. The e...

Full description

Bibliographic Details
Main Authors: Xiangcheng Li, Huiru Liu, Nana Tian, Conglin Zhang, Peng Lyu, Qingfeng Guan
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/10/12/2398
Description
Summary:The "HOPE-I" type high-current pulsed electron beam (HCPEB) equipment was used to irradiate the pure aluminum material with Zr coating preset by ball milling to realize the alloying of a Zr–Al coating surface. The microstructure and phase analysis were conducted by XRD, SEM, and TEM. The experimental results show that after Zr alloying on the Al surface by HCPEB, a layer of 15 μm was formed on the surface of the sample, which was mainly composed of Zr and Al–Zr intermetallic compounds. A large number of Al<sub>3</sub>Zr (Ll2) particles was uniformly distributed in the alloyed layer, and the Al grains were obviously refined. In addition, the surface hardness and corrosion resistance of the samples were improved significantly after HCPEB irradiation.
ISSN:2079-4991