X-ray Diffraction Studies on the Structural Origin of Dynamic Tension Recovery Following Ramp-Shaped Releases in High-Ca Rigor Muscle Fibers

It is generally believed that during muscle contraction, myosin heads (M) extending from myosin filament attaches to actin filaments (A) to perform power stroke, associated with the reaction, A-M-ADP-Pi → A-M + ADP + Pi, so that myosin heads pass through the state of A-M, i.e., rigor A-M c...

Full description

Bibliographic Details
Main Authors: Haruo Sugi, Maki Yamaguchi, Tetsuo Ohno, Hiroshi Okuyama, Naoto Yagi
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/21/4/1244
Description
Summary:It is generally believed that during muscle contraction, myosin heads (M) extending from myosin filament attaches to actin filaments (A) to perform power stroke, associated with the reaction, A-M-ADP-Pi &#8594; A-M + ADP + Pi, so that myosin heads pass through the state of A-M, i.e., rigor A-M complex. We have, however, recently found that: (1) an antibody to myosin head, completely covering actin-binding sites in myosin head, has no effect on Ca<sup>2+</sup>-activated tension in skinned muscle fibers; (2) skinned fibers exhibit distinct tension recovery following ramp-shaped releases (amplitude, 0.5% of Lo; complete in 5 ms); and (3) EDTA, chelating Mg ions, eliminate the tension recovery in low-Ca rigor fibers but not in high-Ca rigor fibers. These results suggest that A-M-ADP myosin heads in high-Ca rigor fibers have dynamic properties to produce the tension recovery following ramp-shaped releases, and that myosin heads do not pass through rigor A-M complex configuration during muscle contraction. To obtain information about the structural changes in A-M-ADP myosin heads during the tension recovery, we performed X-ray diffraction studies on high-Ca rigor skinned fibers subjected to ramp-shaped releases. X-ray diffraction patterns of the fibers were recorded before and after application of ramp-shaped releases. The results obtained indicate that during the initial drop in rigor tension coincident with the applied release, rigor myosin heads take up applied displacement by tilting from oblique to perpendicular configuration to myofilaments, and after the release myosin heads appear to rotate around the helical structure of actin filaments to produce the tension recovery.
ISSN:1422-0067