DNA-Templated Fluorescent Silver Nanoclusters Inhibit Bacterial Growth While Being Non-Toxic to Mammalian Cells

Silver has a long history of antibacterial effectiveness. The combination of atomically precise metal nanoclusters with the field of nucleic acid nanotechnology has given rise to DNA-templated silver nanoclusters (DNA-AgNCs) which can be engineered with reproducible and unique fluorescent properties...

Full description

Bibliographic Details
Main Authors: Lewis Rolband, Liam Yourston, Morgan Chandler, Damian Beasock, Leyla Danai, Seraphim Kozlov, Nolan Marshall, Oleg Shevchenko, Alexey V. Krasnoslobodtsev, Kirill A. Afonin
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Molecules
Subjects:
DNA
Online Access:https://www.mdpi.com/1420-3049/26/13/4045
Description
Summary:Silver has a long history of antibacterial effectiveness. The combination of atomically precise metal nanoclusters with the field of nucleic acid nanotechnology has given rise to DNA-templated silver nanoclusters (DNA-AgNCs) which can be engineered with reproducible and unique fluorescent properties and antibacterial activity. Furthermore, cytosine-rich single-stranded DNA oligonucleotides designed to fold into hairpin structures improve the stability of AgNCs and additionally modulate their antibacterial properties and the quality of observed fluorescent signals. In this work, we characterize the sequence-specific fluorescence and composition of four representative DNA-AgNCs, compare their corresponding antibacterial effectiveness at different pH, and assess cytotoxicity to several mammalian cell lines.
ISSN:1420-3049