Opposing JAK-STAT and Wnt signaling gradients define a stem cell domain by regulating differentiation at two borders

Many adult stem cell communities are maintained by population asymmetry, where stochastic behaviors of multiple individual cells collectively result in a balance between stem cell division and differentiation. We investigated how this is achieved for Drosophila Follicle Stem Cells (FSCs) by spatiall...

Full description

Bibliographic Details
Main Authors: David Melamed, Daniel Kalderon
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2020-11-01
Series:eLife
Subjects:
Wnt
Online Access:https://elifesciences.org/articles/61204
Description
Summary:Many adult stem cell communities are maintained by population asymmetry, where stochastic behaviors of multiple individual cells collectively result in a balance between stem cell division and differentiation. We investigated how this is achieved for Drosophila Follicle Stem Cells (FSCs) by spatially-restricted niche signals. FSCs produce transit-amplifying Follicle Cells (FCs) from their posterior face and quiescent Escort Cells (ECs) to their anterior. We show that JAK-STAT pathway activity, which declines from posterior to anterior, dictates the pattern of divisions over the FSC domain, promotes more posterior FSC locations and conversion to FCs, while opposing EC production. Wnt pathway activity declines from the anterior, promotes anterior FSC locations and EC production, and opposes FC production. The pathways combine to define a stem cell domain through concerted effects on FSC differentiation to ECs and FCs at either end of opposing signaling gradients, and impose a pattern of proliferation that matches derivative production.
ISSN:2050-084X