Preparation of RGO-P25 Nanocomposites for the Photocatalytic Degradation of Ammonia in Livestock Farms

In this paper, the Hummer’s method was used to prepare the compound catalyst of reduced graphene and TiO2 (RGO-P25), and the sand core plate was used as the carrier to provide the theoretical basis for the application of animal environmental purification by exploring the degradation of amm...

Full description

Bibliographic Details
Main Authors: Shihua Pu, Dingbiao Long, Zuohua Liu, Feiyun Yang, Jiaming Zhu
Format: Article
Language:English
Published: MDPI AG 2018-05-01
Series:Catalysts
Subjects:
Online Access:http://www.mdpi.com/2073-4344/8/5/189
Description
Summary:In this paper, the Hummer’s method was used to prepare the compound catalyst of reduced graphene and TiO2 (RGO-P25), and the sand core plate was used as the carrier to provide the theoretical basis for the application of animal environmental purification by exploring the degradation of ammonia in RGO-P25. Characterization results show that the band gap of P25 is reduced from 3.14 eV to 2.96 eV after the combination of RGO, and the recombination rate of the photogenerated electrons and holes also decreased significantly, both resulting in the improvement of ammonia degradation by composite catalysts. Experimental results show that the carrier (sand core plate) and RGO-P25 are effectively stabilized with Si–O–Ti, but the blank core plate carrier could not degrade the ammonia, and its adsorption is not obvious, only 5% ± 1%, under 300 W ultraviolet lamp irradiation, the degradation rates of P25, RGO and RGO-P25 for ammonia at initial concentrations of 119–124 ppm were 72.25%, 81.66% and 93.64%, respectively. P25 dispersed through RGO can effectively adsorb ammonia on the surface to provide a reaction environment and thereby improve its photocatalytic efficiency, thus, endowing the RGO-P25 composites with higher photocatalytic degradation performance than RGO or P25 individually.
ISSN:2073-4344