Fisher–Kolmogorov type perturbations of the mean curvature operator in Minkowski space
We provide a complete description of the existence/non-existence and multiplicity of distinct pairs of nontrivial solutions to the problem with Minkowski operator $$ -\mbox{div} \left(\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\right)= \lambda u(1-a |u|^q) \quad \mbox{ in } \Omega, \; \; u|_{\partial \O...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2020-12-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=8943 |
id |
doaj-cc31990730824cba8fa3c576e9983fd2 |
---|---|
record_format |
Article |
spelling |
doaj-cc31990730824cba8fa3c576e9983fd22021-07-14T07:21:34ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752020-12-0120208111210.14232/ejqtde.2020.1.818943Fisher–Kolmogorov type perturbations of the mean curvature operator in Minkowski spacePetru Jebelean0Calin-Constantin Serban1Department of Mathematics, West University of Timisoara, Timisoara, RomaniaDepartment of Mathematics, West University of Timisoara, Timisoara, RomaniaWe provide a complete description of the existence/non-existence and multiplicity of distinct pairs of nontrivial solutions to the problem with Minkowski operator $$ -\mbox{div} \left(\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\right)= \lambda u(1-a |u|^q) \quad \mbox{ in } \Omega, \; \; u|_{\partial \Omega}=0, \quad (a\geq0<q),$$ when $\lambda \in (0,\infty)$, in terms of the spectrum of the classical Laplacian. Beforehand, we obtain multiplicity of solutions for parameterized and non-parameterized Dirichlet problems involving odd perturbations of this operator. The approach relies on critical point theory for convex, lower semicontinuous perturbations of $C^1$-functionals.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=8943minkowski operatorfisher–kolmogorov nonlinearitieskrasnoselskii's genuscritical point |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Petru Jebelean Calin-Constantin Serban |
spellingShingle |
Petru Jebelean Calin-Constantin Serban Fisher–Kolmogorov type perturbations of the mean curvature operator in Minkowski space Electronic Journal of Qualitative Theory of Differential Equations minkowski operator fisher–kolmogorov nonlinearities krasnoselskii's genus critical point |
author_facet |
Petru Jebelean Calin-Constantin Serban |
author_sort |
Petru Jebelean |
title |
Fisher–Kolmogorov type perturbations of the mean curvature operator in Minkowski space |
title_short |
Fisher–Kolmogorov type perturbations of the mean curvature operator in Minkowski space |
title_full |
Fisher–Kolmogorov type perturbations of the mean curvature operator in Minkowski space |
title_fullStr |
Fisher–Kolmogorov type perturbations of the mean curvature operator in Minkowski space |
title_full_unstemmed |
Fisher–Kolmogorov type perturbations of the mean curvature operator in Minkowski space |
title_sort |
fisher–kolmogorov type perturbations of the mean curvature operator in minkowski space |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
2020-12-01 |
description |
We provide a complete description of the existence/non-existence and multiplicity of distinct pairs of nontrivial solutions to the problem with Minkowski operator
$$ -\mbox{div} \left(\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\right)= \lambda u(1-a |u|^q) \quad \mbox{ in } \Omega, \; \; u|_{\partial \Omega}=0, \quad (a\geq0<q),$$
when $\lambda \in (0,\infty)$, in terms of the spectrum of the classical Laplacian. Beforehand, we obtain multiplicity of solutions for parameterized and non-parameterized Dirichlet problems involving odd perturbations of this operator. The approach relies on critical point theory for convex, lower semicontinuous perturbations of $C^1$-functionals. |
topic |
minkowski operator fisher–kolmogorov nonlinearities krasnoselskii's genus critical point |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=8943 |
work_keys_str_mv |
AT petrujebelean fisherkolmogorovtypeperturbationsofthemeancurvatureoperatorinminkowskispace AT calinconstantinserban fisherkolmogorovtypeperturbationsofthemeancurvatureoperatorinminkowskispace |
_version_ |
1721303400792981504 |