Fisher–Kolmogorov type perturbations of the mean curvature operator in Minkowski space

We provide a complete description of the existence/non-existence and multiplicity of distinct pairs of nontrivial solutions to the problem with Minkowski operator $$ -\mbox{div} \left(\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\right)= \lambda u(1-a |u|^q) \quad \mbox{ in } \Omega, \; \; u|_{\partial \O...

Full description

Bibliographic Details
Main Authors: Petru Jebelean, Calin-Constantin Serban
Format: Article
Language:English
Published: University of Szeged 2020-12-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8943
id doaj-cc31990730824cba8fa3c576e9983fd2
record_format Article
spelling doaj-cc31990730824cba8fa3c576e9983fd22021-07-14T07:21:34ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752020-12-0120208111210.14232/ejqtde.2020.1.818943Fisher–Kolmogorov type perturbations of the mean curvature operator in Minkowski spacePetru Jebelean0Calin-Constantin Serban1Department of Mathematics, West University of Timisoara, Timisoara, RomaniaDepartment of Mathematics, West University of Timisoara, Timisoara, RomaniaWe provide a complete description of the existence/non-existence and multiplicity of distinct pairs of nontrivial solutions to the problem with Minkowski operator $$ -\mbox{div} \left(\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\right)= \lambda u(1-a |u|^q) \quad \mbox{ in } \Omega, \; \; u|_{\partial \Omega}=0, \quad (a\geq0<q),$$ when $\lambda \in (0,\infty)$, in terms of the spectrum of the classical Laplacian. Beforehand, we obtain multiplicity of solutions for parameterized and non-parameterized Dirichlet problems involving odd perturbations of this operator. The approach relies on critical point theory for convex, lower semicontinuous perturbations of $C^1$-functionals.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8943minkowski operatorfisher–kolmogorov nonlinearitieskrasnoselskii's genuscritical point
collection DOAJ
language English
format Article
sources DOAJ
author Petru Jebelean
Calin-Constantin Serban
spellingShingle Petru Jebelean
Calin-Constantin Serban
Fisher–Kolmogorov type perturbations of the mean curvature operator in Minkowski space
Electronic Journal of Qualitative Theory of Differential Equations
minkowski operator
fisher–kolmogorov nonlinearities
krasnoselskii's genus
critical point
author_facet Petru Jebelean
Calin-Constantin Serban
author_sort Petru Jebelean
title Fisher–Kolmogorov type perturbations of the mean curvature operator in Minkowski space
title_short Fisher–Kolmogorov type perturbations of the mean curvature operator in Minkowski space
title_full Fisher–Kolmogorov type perturbations of the mean curvature operator in Minkowski space
title_fullStr Fisher–Kolmogorov type perturbations of the mean curvature operator in Minkowski space
title_full_unstemmed Fisher–Kolmogorov type perturbations of the mean curvature operator in Minkowski space
title_sort fisher–kolmogorov type perturbations of the mean curvature operator in minkowski space
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2020-12-01
description We provide a complete description of the existence/non-existence and multiplicity of distinct pairs of nontrivial solutions to the problem with Minkowski operator $$ -\mbox{div} \left(\frac{\nabla u}{\sqrt{1-|\nabla u|^2}}\right)= \lambda u(1-a |u|^q) \quad \mbox{ in } \Omega, \; \; u|_{\partial \Omega}=0, \quad (a\geq0<q),$$ when $\lambda \in (0,\infty)$, in terms of the spectrum of the classical Laplacian. Beforehand, we obtain multiplicity of solutions for parameterized and non-parameterized Dirichlet problems involving odd perturbations of this operator. The approach relies on critical point theory for convex, lower semicontinuous perturbations of $C^1$-functionals.
topic minkowski operator
fisher–kolmogorov nonlinearities
krasnoselskii's genus
critical point
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=8943
work_keys_str_mv AT petrujebelean fisherkolmogorovtypeperturbationsofthemeancurvatureoperatorinminkowskispace
AT calinconstantinserban fisherkolmogorovtypeperturbationsofthemeancurvatureoperatorinminkowskispace
_version_ 1721303400792981504