Electrical Properties and Strain Sensing Mechanisms in Hybrid Graphene Nanoplatelet/Carbon Nanotube Nanocomposites

Electrical and electromechanical properties of hybrid graphene nanoplatelet (GNP)/carbon nanotube (CNT)-reinforced composites were analyzed under two different sonication conditions. The electrical conductivity increases with increasing nanofiller content, while the optimum sonication time decreases...

Full description

Bibliographic Details
Main Authors: Xoan F. Sánchez-Romate, Alberto Jiménez-Suárez, Mónica Campo, Alejandro Ureña, Silvia G. Prolongo
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/16/5530
id doaj-cc8ac681d290489589d0f7389169dc18
record_format Article
spelling doaj-cc8ac681d290489589d0f7389169dc182021-08-26T14:19:22ZengMDPI AGSensors1424-82202021-08-01215530553010.3390/s21165530Electrical Properties and Strain Sensing Mechanisms in Hybrid Graphene Nanoplatelet/Carbon Nanotube NanocompositesXoan F. Sánchez-Romate0Alberto Jiménez-Suárez1Mónica Campo2Alejandro Ureña3Silvia G. Prolongo4Materials Science and Engineering Area, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, 28933 Madrid, SpainMaterials Science and Engineering Area, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, 28933 Madrid, SpainMaterials Science and Engineering Area, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, 28933 Madrid, SpainMaterials Science and Engineering Area, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, 28933 Madrid, SpainMaterials Science and Engineering Area, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, 28933 Madrid, SpainElectrical and electromechanical properties of hybrid graphene nanoplatelet (GNP)/carbon nanotube (CNT)-reinforced composites were analyzed under two different sonication conditions. The electrical conductivity increases with increasing nanofiller content, while the optimum sonication time decreases in a low viscosity media. Therefore, for samples with a higher concentration of GNPs, an increase of sonication time of the hybrid GNP/CNT mixture generally leads to an enhancement of the electrical conductivity, up to values of 3 S/m. This means that the optimum sonication process to achieve the best performances is reached in the longest times. Strain sensing tests show a higher prevalence of GNPs at samples with a high GNP/CNT ratio, reaching gauge factors of around 10, with an exponential behavior of electrical resistance with applied strain, whereas samples with lower GNP/CNT ratio have a more linear response owing to a higher prevalence of CNT tunneling transport mechanisms, with gauge factors of around 3–4.https://www.mdpi.com/1424-8220/21/16/5530carbon nanotubesgraphene nanoplateletselectrical propertieshybrid nanocompositesstrain sensing
collection DOAJ
language English
format Article
sources DOAJ
author Xoan F. Sánchez-Romate
Alberto Jiménez-Suárez
Mónica Campo
Alejandro Ureña
Silvia G. Prolongo
spellingShingle Xoan F. Sánchez-Romate
Alberto Jiménez-Suárez
Mónica Campo
Alejandro Ureña
Silvia G. Prolongo
Electrical Properties and Strain Sensing Mechanisms in Hybrid Graphene Nanoplatelet/Carbon Nanotube Nanocomposites
Sensors
carbon nanotubes
graphene nanoplatelets
electrical properties
hybrid nanocomposites
strain sensing
author_facet Xoan F. Sánchez-Romate
Alberto Jiménez-Suárez
Mónica Campo
Alejandro Ureña
Silvia G. Prolongo
author_sort Xoan F. Sánchez-Romate
title Electrical Properties and Strain Sensing Mechanisms in Hybrid Graphene Nanoplatelet/Carbon Nanotube Nanocomposites
title_short Electrical Properties and Strain Sensing Mechanisms in Hybrid Graphene Nanoplatelet/Carbon Nanotube Nanocomposites
title_full Electrical Properties and Strain Sensing Mechanisms in Hybrid Graphene Nanoplatelet/Carbon Nanotube Nanocomposites
title_fullStr Electrical Properties and Strain Sensing Mechanisms in Hybrid Graphene Nanoplatelet/Carbon Nanotube Nanocomposites
title_full_unstemmed Electrical Properties and Strain Sensing Mechanisms in Hybrid Graphene Nanoplatelet/Carbon Nanotube Nanocomposites
title_sort electrical properties and strain sensing mechanisms in hybrid graphene nanoplatelet/carbon nanotube nanocomposites
publisher MDPI AG
series Sensors
issn 1424-8220
publishDate 2021-08-01
description Electrical and electromechanical properties of hybrid graphene nanoplatelet (GNP)/carbon nanotube (CNT)-reinforced composites were analyzed under two different sonication conditions. The electrical conductivity increases with increasing nanofiller content, while the optimum sonication time decreases in a low viscosity media. Therefore, for samples with a higher concentration of GNPs, an increase of sonication time of the hybrid GNP/CNT mixture generally leads to an enhancement of the electrical conductivity, up to values of 3 S/m. This means that the optimum sonication process to achieve the best performances is reached in the longest times. Strain sensing tests show a higher prevalence of GNPs at samples with a high GNP/CNT ratio, reaching gauge factors of around 10, with an exponential behavior of electrical resistance with applied strain, whereas samples with lower GNP/CNT ratio have a more linear response owing to a higher prevalence of CNT tunneling transport mechanisms, with gauge factors of around 3–4.
topic carbon nanotubes
graphene nanoplatelets
electrical properties
hybrid nanocomposites
strain sensing
url https://www.mdpi.com/1424-8220/21/16/5530
work_keys_str_mv AT xoanfsanchezromate electricalpropertiesandstrainsensingmechanismsinhybridgraphenenanoplateletcarbonnanotubenanocomposites
AT albertojimenezsuarez electricalpropertiesandstrainsensingmechanismsinhybridgraphenenanoplateletcarbonnanotubenanocomposites
AT monicacampo electricalpropertiesandstrainsensingmechanismsinhybridgraphenenanoplateletcarbonnanotubenanocomposites
AT alejandrourena electricalpropertiesandstrainsensingmechanismsinhybridgraphenenanoplateletcarbonnanotubenanocomposites
AT silviagprolongo electricalpropertiesandstrainsensingmechanismsinhybridgraphenenanoplateletcarbonnanotubenanocomposites
_version_ 1721190094055931904