Observation of sensible and latent heat flux profiles with lidar

<p>We present the first measurement of the sensible heat flux (<span class="inline-formula"><i>H</i></span>) profile in the convective boundary layer (CBL) derived from the covariance of collocated vertical-pointing temperature rotational Raman lidar and Doppl...

Full description

Bibliographic Details
Main Authors: A. Behrendt, V. Wulfmeyer, C. Senff, S. K. Muppa, F. Späth, D. Lange, N. Kalthoff, A. Wieser
Format: Article
Language:English
Published: Copernicus Publications 2020-06-01
Series:Atmospheric Measurement Techniques
Online Access:https://www.atmos-meas-tech.net/13/3221/2020/amt-13-3221-2020.pdf
id doaj-ccc9016e254b434ab34624676cd8431e
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author A. Behrendt
V. Wulfmeyer
C. Senff
C. Senff
S. K. Muppa
S. K. Muppa
F. Späth
D. Lange
N. Kalthoff
A. Wieser
spellingShingle A. Behrendt
V. Wulfmeyer
C. Senff
C. Senff
S. K. Muppa
S. K. Muppa
F. Späth
D. Lange
N. Kalthoff
A. Wieser
Observation of sensible and latent heat flux profiles with lidar
Atmospheric Measurement Techniques
author_facet A. Behrendt
V. Wulfmeyer
C. Senff
C. Senff
S. K. Muppa
S. K. Muppa
F. Späth
D. Lange
N. Kalthoff
A. Wieser
author_sort A. Behrendt
title Observation of sensible and latent heat flux profiles with lidar
title_short Observation of sensible and latent heat flux profiles with lidar
title_full Observation of sensible and latent heat flux profiles with lidar
title_fullStr Observation of sensible and latent heat flux profiles with lidar
title_full_unstemmed Observation of sensible and latent heat flux profiles with lidar
title_sort observation of sensible and latent heat flux profiles with lidar
publisher Copernicus Publications
series Atmospheric Measurement Techniques
issn 1867-1381
1867-8548
publishDate 2020-06-01
description <p>We present the first measurement of the sensible heat flux (<span class="inline-formula"><i>H</i></span>) profile in the convective boundary layer (CBL) derived from the covariance of collocated vertical-pointing temperature rotational Raman lidar and Doppler wind lidar measurements. The uncertainties of the <span class="inline-formula"><i>H</i></span> measurements due to instrumental noise and limited sampling are also derived and discussed. Simultaneous measurements of the latent heat flux profile (<span class="inline-formula"><i>L</i>)</span> and other turbulent variables were obtained with the combination of water-vapor differential absorption lidar (WVDIAL) and Doppler lidar. The case study uses a measurement example from the HOPE (HD(CP)<span class="inline-formula"><sup>2</sup></span> Observational Prototype Experiment) campaign, which took place in western Germany in 2013 and presents a cloud-free well-developed quasi-stationary CBL. The mean boundary layer height <span class="inline-formula"><i>z</i><sub>i</sub></span> was at 1230&thinsp;m above ground level. The results show – as expected – positive values of <span class="inline-formula"><i>H</i></span> in the middle of the CBL. A maximum of (<span class="inline-formula">182±32</span>)&thinsp;W&thinsp;m<span class="inline-formula"><sup>−2</sup></span>, with the second number for the noise uncertainty, is found at 0.5 <span class="inline-formula"><i>z</i><sub>i</sub></span>. At about 0.7 <span class="inline-formula"><i>z</i><sub>i</sub></span>, <span class="inline-formula"><i>H</i></span> changes sign to negative values above. The entrainment flux was <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>(</mo><mo>-</mo><mn mathvariant="normal">62</mn><mo>±</mo><mn mathvariant="normal">27</mn><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="53pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="237aead43ca935715b3ac2e3e902abab"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-3221-2020-ie00001.svg" width="53pt" height="12pt" src="amt-13-3221-2020-ie00001.png"/></svg:svg></span></span>&thinsp;W&thinsp;m<span class="inline-formula"><sup>−2</sup></span>. The mean sensible heat flux divergence in the observed part of the CBL above 0.3 <span class="inline-formula"><i>z</i><sub>i</sub></span> was <span class="inline-formula">−0.28</span>&thinsp;W&thinsp;m<span class="inline-formula"><sup>−3</sup></span>, which corresponds to a warming of 0.83&thinsp;K&thinsp;h<span class="inline-formula"><sup>−1</sup></span>. The <span class="inline-formula"><i>L</i></span> profile shows a slight positive mean flux divergence of 0.12&thinsp;W&thinsp;m<span class="inline-formula"><sup>−3</sup></span> and an entrainment flux of <span class="inline-formula">(214±36)</span>&thinsp;W&thinsp;m<span class="inline-formula"><sup>−2</sup></span>. The combination of <span class="inline-formula"><i>H</i></span> and <span class="inline-formula"><i>L</i></span> profiles in combination with variance and other turbulent parameters is very valuable for the evaluation of large-eddy simulation (LES) results and the further improvement and validation of turbulence parameterization schemes.</p>
url https://www.atmos-meas-tech.net/13/3221/2020/amt-13-3221-2020.pdf
work_keys_str_mv AT abehrendt observationofsensibleandlatentheatfluxprofileswithlidar
AT vwulfmeyer observationofsensibleandlatentheatfluxprofileswithlidar
AT csenff observationofsensibleandlatentheatfluxprofileswithlidar
AT csenff observationofsensibleandlatentheatfluxprofileswithlidar
AT skmuppa observationofsensibleandlatentheatfluxprofileswithlidar
AT skmuppa observationofsensibleandlatentheatfluxprofileswithlidar
AT fspath observationofsensibleandlatentheatfluxprofileswithlidar
AT dlange observationofsensibleandlatentheatfluxprofileswithlidar
AT nkalthoff observationofsensibleandlatentheatfluxprofileswithlidar
AT awieser observationofsensibleandlatentheatfluxprofileswithlidar
_version_ 1724628810753638400
spelling doaj-ccc9016e254b434ab34624676cd8431e2020-11-25T03:18:07ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482020-06-01133221323310.5194/amt-13-3221-2020Observation of sensible and latent heat flux profiles with lidarA. Behrendt0V. Wulfmeyer1C. Senff2C. Senff3S. K. Muppa4S. K. Muppa5F. Späth6D. Lange7N. Kalthoff8A. Wieser9Institute of Physics and Meteorology, University of Hohenheim, Stuttgart, GermanyInstitute of Physics and Meteorology, University of Hohenheim, Stuttgart, GermanyCooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, USANOAA Earth System Research Laboratory/Chemical Sciences Division, Boulder, CO, USAInstitute of Physics and Meteorology, University of Hohenheim, Stuttgart, Germanynow at: Department of Micrometeorology, University of Bayreuth, Bayreuth, GermanyInstitute of Physics and Meteorology, University of Hohenheim, Stuttgart, GermanyInstitute of Physics and Meteorology, University of Hohenheim, Stuttgart, GermanyInstitute of Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, GermanyInstitute of Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany<p>We present the first measurement of the sensible heat flux (<span class="inline-formula"><i>H</i></span>) profile in the convective boundary layer (CBL) derived from the covariance of collocated vertical-pointing temperature rotational Raman lidar and Doppler wind lidar measurements. The uncertainties of the <span class="inline-formula"><i>H</i></span> measurements due to instrumental noise and limited sampling are also derived and discussed. Simultaneous measurements of the latent heat flux profile (<span class="inline-formula"><i>L</i>)</span> and other turbulent variables were obtained with the combination of water-vapor differential absorption lidar (WVDIAL) and Doppler lidar. The case study uses a measurement example from the HOPE (HD(CP)<span class="inline-formula"><sup>2</sup></span> Observational Prototype Experiment) campaign, which took place in western Germany in 2013 and presents a cloud-free well-developed quasi-stationary CBL. The mean boundary layer height <span class="inline-formula"><i>z</i><sub>i</sub></span> was at 1230&thinsp;m above ground level. The results show – as expected – positive values of <span class="inline-formula"><i>H</i></span> in the middle of the CBL. A maximum of (<span class="inline-formula">182±32</span>)&thinsp;W&thinsp;m<span class="inline-formula"><sup>−2</sup></span>, with the second number for the noise uncertainty, is found at 0.5 <span class="inline-formula"><i>z</i><sub>i</sub></span>. At about 0.7 <span class="inline-formula"><i>z</i><sub>i</sub></span>, <span class="inline-formula"><i>H</i></span> changes sign to negative values above. The entrainment flux was <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>(</mo><mo>-</mo><mn mathvariant="normal">62</mn><mo>±</mo><mn mathvariant="normal">27</mn><mo>)</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="53pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="237aead43ca935715b3ac2e3e902abab"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-13-3221-2020-ie00001.svg" width="53pt" height="12pt" src="amt-13-3221-2020-ie00001.png"/></svg:svg></span></span>&thinsp;W&thinsp;m<span class="inline-formula"><sup>−2</sup></span>. The mean sensible heat flux divergence in the observed part of the CBL above 0.3 <span class="inline-formula"><i>z</i><sub>i</sub></span> was <span class="inline-formula">−0.28</span>&thinsp;W&thinsp;m<span class="inline-formula"><sup>−3</sup></span>, which corresponds to a warming of 0.83&thinsp;K&thinsp;h<span class="inline-formula"><sup>−1</sup></span>. The <span class="inline-formula"><i>L</i></span> profile shows a slight positive mean flux divergence of 0.12&thinsp;W&thinsp;m<span class="inline-formula"><sup>−3</sup></span> and an entrainment flux of <span class="inline-formula">(214±36)</span>&thinsp;W&thinsp;m<span class="inline-formula"><sup>−2</sup></span>. The combination of <span class="inline-formula"><i>H</i></span> and <span class="inline-formula"><i>L</i></span> profiles in combination with variance and other turbulent parameters is very valuable for the evaluation of large-eddy simulation (LES) results and the further improvement and validation of turbulence parameterization schemes.</p>https://www.atmos-meas-tech.net/13/3221/2020/amt-13-3221-2020.pdf