Thermotropic liquid crystalline copolyester fibers according to various heat treatment conditions

Abstract Thermotropic liquid crystal copolyester (TLCP) was synthesized using a melt polymerization method, with a molar ratio composition of 2,5-diethoxy terephthalic acid (ETA), hydroquinone (HQ), and p-hydroxybenzoic acid (HBA) of 1:1:3. TLCP exhibited nematic liquid crystalline mesophase and mai...

Full description

Bibliographic Details
Main Authors: Won Jun Lee, Lee Ku Kwac, Hong Gun Kim, Jin-Hae Chang
Format: Article
Language:English
Published: Nature Publishing Group 2021-06-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-021-91212-4
Description
Summary:Abstract Thermotropic liquid crystal copolyester (TLCP) was synthesized using a melt polymerization method, with a molar ratio composition of 2,5-diethoxy terephthalic acid (ETA), hydroquinone (HQ), and p-hydroxybenzoic acid (HBA) of 1:1:3. TLCP exhibited nematic liquid crystalline mesophase and maintained nematic textures under all heat treatment conditions applied. The synthesized TLCP was processed into fibers using a capillary rheometer. The liquid crystalline mesophase, thermo-mechanical properties, and morphology of TLCP fibers obtained under various heat treatment conditions were investigated. The thermo-mechanical properties of the heat-treated fibers were improved compared to those of the as-spun fibers. The best results were obtained for TLCP fibers annealed at 230 °C for 9 h. The heat-treated fibers showed a well-developed microfiber morphology compared to the as-spun fibers. In the spun fibers, a skin–core morphology was observed regardless of the heat treatment conditions, and a well-developed fiber morphology better than the core area was observed in the skin area. The diameter of the fiber heat-treated at 230 °C for 9 h was approximately 60–110 nm.
ISSN:2045-2322