Cyber-Physical Trust Systems Driven by Blockchain

Cyber Physical Trust Systems (CPTS) are Cyber Physical Systems and Internet of Things enriched with trust as an explicit, measurable, testable and verifiable system component. In this paper, we propose to use blockchain, a distributed ledger technology, as the trust enabling system component for CPT...

Full description

Bibliographic Details
Main Authors: Alexander J. M. Milne, Arnold Beckmann, Pardeep Kumar
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9051705/
Description
Summary:Cyber Physical Trust Systems (CPTS) are Cyber Physical Systems and Internet of Things enriched with trust as an explicit, measurable, testable and verifiable system component. In this paper, we propose to use blockchain, a distributed ledger technology, as the trust enabling system component for CPTS. We propose two schemes for CPTSs driven by blockchain in relation to two typical network model cases. We show that our proposed approach achieves the security properties, such as device identification, authentication, integrity, and non-repudiation, and provides protection against popular attacks, such as replay and spoofing. We provide formal proofs of those properties using the Tamarin Prover tool. We describe results of a proof-of-concept which implements a CPTS driven by blockchain for physical asset management and present a performance analysis of our implementation. We identify use cases in which CPTSs driven by blockchain find applications.
ISSN:2169-3536