3D Simulation for Melt Laser Anneal Integration in FinFET’s Contact

Process integration feasibility of UV nanosecond melt laser annealing (MLA) in 14 nm node generation FinFET's contact for dopant surface segregation and activation is assessed by using a 3D TCAD simulation tool. In a n-type source/drain (S/D) in-situ phosphorous doped epilayer, Sb ion implantat...

Full description

Bibliographic Details
Main Authors: Toshiyuki Tabata, Benoit Curvers, Karim Huet, Soon Aik Chew, Jean-Luc Everaert, Naoto Horiguchi
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Journal of the Electron Devices Society
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9223740/
id doaj-cd4ca50f73ba47e1ba03d0f34a6e5f9f
record_format Article
spelling doaj-cd4ca50f73ba47e1ba03d0f34a6e5f9f2021-03-29T18:51:45ZengIEEEIEEE Journal of the Electron Devices Society2168-67342020-01-0181323132710.1109/JEDS.2020.303092392237403D Simulation for Melt Laser Anneal Integration in FinFET’s ContactToshiyuki Tabata0https://orcid.org/0000-0003-4923-5663Benoit Curvers1Karim Huet2Soon Aik Chew3Jean-Luc Everaert4Naoto Horiguchi5Laser Systems and Solutions of Europe (LASSE), Gennevilliers, FranceLaser Systems and Solutions of Europe (LASSE), Gennevilliers, FranceLaser Systems and Solutions of Europe (LASSE), Gennevilliers, FranceSemiconductor Technology and Systems Unit, imec, Leuven, BelgiumSemiconductor Technology and Systems Unit, imec, Leuven, BelgiumSemiconductor Technology and Systems Unit, imec, Leuven, BelgiumProcess integration feasibility of UV nanosecond melt laser annealing (MLA) in 14 nm node generation FinFET's contact for dopant surface segregation and activation is assessed by using a 3D TCAD simulation tool. In a n-type source/drain (S/D) in-situ phosphorous doped epilayer, Sb ion implantation is performed, considering the advantage of its surface segregation in lowering of the contact resistivity. The simulation results show that the heat sources created by the laser irradiation are confined mainly in the replacement metal gate (RMG) part, suggesting a potential interest of controlling the polarization of laser light to enlarge the process window by reducing the laser absorption in the RMG part. Also, the estimated solidification front velocity (V) in the MLA-induced epilayer regrowth (~4 m/s) satisfies the requirements (~1 m/s <; V <; ~15 m/s) to enable the surface segregation and metastable activation of the dopants. The surface segregation is also experimentally confirmed in the FinFET contact module.https://ieeexplore.ieee.org/document/9223740/ContactsFinFETmelt laser annealTCAD
collection DOAJ
language English
format Article
sources DOAJ
author Toshiyuki Tabata
Benoit Curvers
Karim Huet
Soon Aik Chew
Jean-Luc Everaert
Naoto Horiguchi
spellingShingle Toshiyuki Tabata
Benoit Curvers
Karim Huet
Soon Aik Chew
Jean-Luc Everaert
Naoto Horiguchi
3D Simulation for Melt Laser Anneal Integration in FinFET’s Contact
IEEE Journal of the Electron Devices Society
Contacts
FinFET
melt laser anneal
TCAD
author_facet Toshiyuki Tabata
Benoit Curvers
Karim Huet
Soon Aik Chew
Jean-Luc Everaert
Naoto Horiguchi
author_sort Toshiyuki Tabata
title 3D Simulation for Melt Laser Anneal Integration in FinFET’s Contact
title_short 3D Simulation for Melt Laser Anneal Integration in FinFET’s Contact
title_full 3D Simulation for Melt Laser Anneal Integration in FinFET’s Contact
title_fullStr 3D Simulation for Melt Laser Anneal Integration in FinFET’s Contact
title_full_unstemmed 3D Simulation for Melt Laser Anneal Integration in FinFET’s Contact
title_sort 3d simulation for melt laser anneal integration in finfet’s contact
publisher IEEE
series IEEE Journal of the Electron Devices Society
issn 2168-6734
publishDate 2020-01-01
description Process integration feasibility of UV nanosecond melt laser annealing (MLA) in 14 nm node generation FinFET's contact for dopant surface segregation and activation is assessed by using a 3D TCAD simulation tool. In a n-type source/drain (S/D) in-situ phosphorous doped epilayer, Sb ion implantation is performed, considering the advantage of its surface segregation in lowering of the contact resistivity. The simulation results show that the heat sources created by the laser irradiation are confined mainly in the replacement metal gate (RMG) part, suggesting a potential interest of controlling the polarization of laser light to enlarge the process window by reducing the laser absorption in the RMG part. Also, the estimated solidification front velocity (V) in the MLA-induced epilayer regrowth (~4 m/s) satisfies the requirements (~1 m/s <; V <; ~15 m/s) to enable the surface segregation and metastable activation of the dopants. The surface segregation is also experimentally confirmed in the FinFET contact module.
topic Contacts
FinFET
melt laser anneal
TCAD
url https://ieeexplore.ieee.org/document/9223740/
work_keys_str_mv AT toshiyukitabata 3dsimulationformeltlaserannealintegrationinfinfetx2019scontact
AT benoitcurvers 3dsimulationformeltlaserannealintegrationinfinfetx2019scontact
AT karimhuet 3dsimulationformeltlaserannealintegrationinfinfetx2019scontact
AT soonaikchew 3dsimulationformeltlaserannealintegrationinfinfetx2019scontact
AT jeanluceveraert 3dsimulationformeltlaserannealintegrationinfinfetx2019scontact
AT naotohoriguchi 3dsimulationformeltlaserannealintegrationinfinfetx2019scontact
_version_ 1724196396048842752