Research on Critical Liquid-Carrying Model in Wellbore and Laboratory Experimental Verification

Liquid loading in gas wells may slash production rates, shorten production life, or even stop production. In order to reveal the mechanism of liquid loading in gas wells and predict its critical flowrates, theoretical research and laboratory experiments were conducted in this work. A new model of li...

Full description

Bibliographic Details
Main Authors: Wenqi Ke, Lintong Hou, Lisong Wang, Jun Niu, Jingyu Xu
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Processes
Subjects:
Online Access:https://www.mdpi.com/2227-9717/9/6/923
id doaj-cd55bf50f5b5451ebd8ef99cc312d9ee
record_format Article
spelling doaj-cd55bf50f5b5451ebd8ef99cc312d9ee2021-06-01T00:59:42ZengMDPI AGProcesses2227-97172021-05-01992392310.3390/pr9060923Research on Critical Liquid-Carrying Model in Wellbore and Laboratory Experimental VerificationWenqi Ke0Lintong Hou1Lisong Wang2Jun Niu3Jingyu Xu4State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, ChinaInstitute of Mechanics, Chinese Academy of Sciences, Beijing 100190, ChinaInstitute of Mechanics, Chinese Academy of Sciences, Beijing 100190, ChinaState Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, ChinaInstitute of Mechanics, Chinese Academy of Sciences, Beijing 100190, ChinaLiquid loading in gas wells may slash production rates, shorten production life, or even stop production. In order to reveal the mechanism of liquid loading in gas wells and predict its critical flowrates, theoretical research and laboratory experiments were conducted in this work. A new model of liquid-film reversal was established based on Newton’s law of internal friction and gas–liquid two-phase force balance, with the critical reverse point obtained using the minimum gas–liquid interface shear force method. In this model, the influences of the pipe angle on the liquid film thickness were considered, and the friction coefficient of the gas–liquid interface was refined based on the experimental data. The results showed that the interfacial shear force increases by increasing the liquid superficial velocity, which leads first to an increase of the critical liquid-carrying gas velocity and then to a decrease, and the critical production also decreases. With 0° as the vertical position of the pipeline and an increase of the inclination angle, the critical liquid-carrying velocity first increases and then decreases, and the maximum liquid-carrying velocity appears in the range of 30–40°. In addition, the critical liquid-carrying gas velocity is positively correlated with the pipe diameter. Compared with the previous model, the model in this work performed better considering its prediction discrepancy with experiment data was less than 10%, which shows that the model can be used to calculate the critical liquid-carrying flow rate of gas wells. The outcome of this work provides better understanding of the liquid-loading mechanism. Furthermore, the prediction model proposed can provide guidance in field design to prevent liquid loading.https://www.mdpi.com/2227-9717/9/6/923liquid loadingliquid-film reversalcritical liquid-carrying velocitypredictive model
collection DOAJ
language English
format Article
sources DOAJ
author Wenqi Ke
Lintong Hou
Lisong Wang
Jun Niu
Jingyu Xu
spellingShingle Wenqi Ke
Lintong Hou
Lisong Wang
Jun Niu
Jingyu Xu
Research on Critical Liquid-Carrying Model in Wellbore and Laboratory Experimental Verification
Processes
liquid loading
liquid-film reversal
critical liquid-carrying velocity
predictive model
author_facet Wenqi Ke
Lintong Hou
Lisong Wang
Jun Niu
Jingyu Xu
author_sort Wenqi Ke
title Research on Critical Liquid-Carrying Model in Wellbore and Laboratory Experimental Verification
title_short Research on Critical Liquid-Carrying Model in Wellbore and Laboratory Experimental Verification
title_full Research on Critical Liquid-Carrying Model in Wellbore and Laboratory Experimental Verification
title_fullStr Research on Critical Liquid-Carrying Model in Wellbore and Laboratory Experimental Verification
title_full_unstemmed Research on Critical Liquid-Carrying Model in Wellbore and Laboratory Experimental Verification
title_sort research on critical liquid-carrying model in wellbore and laboratory experimental verification
publisher MDPI AG
series Processes
issn 2227-9717
publishDate 2021-05-01
description Liquid loading in gas wells may slash production rates, shorten production life, or even stop production. In order to reveal the mechanism of liquid loading in gas wells and predict its critical flowrates, theoretical research and laboratory experiments were conducted in this work. A new model of liquid-film reversal was established based on Newton’s law of internal friction and gas–liquid two-phase force balance, with the critical reverse point obtained using the minimum gas–liquid interface shear force method. In this model, the influences of the pipe angle on the liquid film thickness were considered, and the friction coefficient of the gas–liquid interface was refined based on the experimental data. The results showed that the interfacial shear force increases by increasing the liquid superficial velocity, which leads first to an increase of the critical liquid-carrying gas velocity and then to a decrease, and the critical production also decreases. With 0° as the vertical position of the pipeline and an increase of the inclination angle, the critical liquid-carrying velocity first increases and then decreases, and the maximum liquid-carrying velocity appears in the range of 30–40°. In addition, the critical liquid-carrying gas velocity is positively correlated with the pipe diameter. Compared with the previous model, the model in this work performed better considering its prediction discrepancy with experiment data was less than 10%, which shows that the model can be used to calculate the critical liquid-carrying flow rate of gas wells. The outcome of this work provides better understanding of the liquid-loading mechanism. Furthermore, the prediction model proposed can provide guidance in field design to prevent liquid loading.
topic liquid loading
liquid-film reversal
critical liquid-carrying velocity
predictive model
url https://www.mdpi.com/2227-9717/9/6/923
work_keys_str_mv AT wenqike researchoncriticalliquidcarryingmodelinwellboreandlaboratoryexperimentalverification
AT lintonghou researchoncriticalliquidcarryingmodelinwellboreandlaboratoryexperimentalverification
AT lisongwang researchoncriticalliquidcarryingmodelinwellboreandlaboratoryexperimentalverification
AT junniu researchoncriticalliquidcarryingmodelinwellboreandlaboratoryexperimentalverification
AT jingyuxu researchoncriticalliquidcarryingmodelinwellboreandlaboratoryexperimentalverification
_version_ 1721413346415083520