Signature molecular changes in the skeletal muscle of hindlimb unloaded mice

Hind-limb unloaded (HU) mouse is a well-recognized model of muscle atrophy; however, the molecular changes in the skeletal muscle during unloading are poorly characterized. We have used Raman spectroscopy to evaluate the structure and behavior of signature molecules involved in regulating muscle str...

Full description

Bibliographic Details
Main Authors: Muhammad Azeem, Rizwan Qaisar, Asima Karim, Anu Ranade, Adel Elmoselhi
Format: Article
Language:English
Published: Elsevier 2021-03-01
Series:Biochemistry and Biophysics Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405580821000248
Description
Summary:Hind-limb unloaded (HU) mouse is a well-recognized model of muscle atrophy; however, the molecular changes in the skeletal muscle during unloading are poorly characterized. We have used Raman spectroscopy to evaluate the structure and behavior of signature molecules involved in regulating muscle structural and functional health. The Raman spectroscopic analysis of gastrocnemius muscles was compared between 16-18 weeks old HU c57Bl/6J mice and ground-based controls. The spectra showed that the signals for asparagine and glutamine were reduced in HU mice, possibly indicating increased catabolism. The peaks for hydroxyproline and proline were split, pointing towards molecular breakdown and reduced tendon repair. We also report a consistently increased intensity in> 1300 cm-1 range in the Raman spectra along with a shift towards higher frequencies in the HU mice, indicating activation of sarcoplasmic reticulum (SR) stress during HU.
ISSN:2405-5808