Utilization of Clustered Regularly Interspaced Short Palindromic Repeats to Genotype Escherichia coli Serogroup O80

The hypervariable nature of clustered regularly interspaced short palindromic repeats (CRISPRs) makes them valuable biomarkers for subtyping and epidemiological investigation of Escherichia coli. Shiga toxin-producing E. coli (STEC) serogroup O80 is one hybrid pathotype that is emerging recently in...

Full description

Bibliographic Details
Main Authors: Jinzhao Long, Yake Xu, Liuyang Ou, Haiyan Yang, Yuanlin Xi, Shuaiyin Chen, Guangcai Duan
Format: Article
Language:English
Published: Frontiers Media S.A. 2020-07-01
Series:Frontiers in Microbiology
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fmicb.2020.01708/full
Description
Summary:The hypervariable nature of clustered regularly interspaced short palindromic repeats (CRISPRs) makes them valuable biomarkers for subtyping and epidemiological investigation of Escherichia coli. Shiga toxin-producing E. coli (STEC) serogroup O80 is one hybrid pathotype that is emerging recently in Europe and is involved in hemolytic uremic syndrome with bacteremia. However, whether STEC O80 strains can be genotyped using CRISPR has not been evaluated. In this study, we aimed to characterize the genetic diversity of 81 E. coli serogroup O80 isolates deposited in the National Center for Biotechnology Information databases using CRISPR typing and to explore the association between virulence potential and CRISPR types (CTs). A total of 21 CTs were identified in 80 O80 strains. CRISRP typing provided discrimination with variants of a single serotype, which suggested a stronger discriminatory power. Based on CRISPR spacer profiles, 70 O80:H2 isolates were further divided into four lineages (lineage LI, LII, LIII, and LIV), which correlated well with whole-genome single nucleotide polymorphisms typing and virulence gene profiles. Moreover, the association between CRISPR lineages and virulence gene profiles hinted that STEC O80:H2 strains may originate from O80:H19 or O80:H26 and that lineage LI may have been evolved from lineage LII. CT2 and CT13 were shared by human and cattle isolates, suggesting that there might be the potential transmission between cattle and human. Collectively, CRISPR typing is one technology that can be used to monitor the transmission of STEC O80 strains and provide new insights into microevolution of serogroup O80.
ISSN:1664-302X