PfMDR1: mechanisms of transport modulation by functional polymorphisms.

ATP-Binding Cassette (ABC) transporters are efflux pumps frequently associated with multidrug resistance in many biological systems, including malaria. Antimalarial drug-resistance involves an ABC transporter, PfMDR1, a homologue of P-glycoprotein in humans. Twenty years of research have shown that...

Full description

Bibliographic Details
Main Authors: Pedro Eduardo Ferreira, Gabrielle Holmgren, Maria Isabel Veiga, Per Uhlén, Akira Kaneko, José Pedro Gil
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2011-01-01
Series:PLoS ONE
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21912647/pdf/?tool=EBI
id doaj-cd80b8e866e44f16966a73e87bac27d6
record_format Article
spelling doaj-cd80b8e866e44f16966a73e87bac27d62021-03-04T01:37:24ZengPublic Library of Science (PLoS)PLoS ONE1932-62032011-01-0169e2387510.1371/journal.pone.0023875PfMDR1: mechanisms of transport modulation by functional polymorphisms.Pedro Eduardo FerreiraGabrielle HolmgrenMaria Isabel VeigaPer UhlénAkira KanekoJosé Pedro GilATP-Binding Cassette (ABC) transporters are efflux pumps frequently associated with multidrug resistance in many biological systems, including malaria. Antimalarial drug-resistance involves an ABC transporter, PfMDR1, a homologue of P-glycoprotein in humans. Twenty years of research have shown that several single nucleotide polymorphisms in pfmdr1 modulate in vivo and/or in vitro drug susceptibility. The underlying physiological mechanism of the effect of these mutations remains unclear. Here we develop structural models for PfMDR1 in different predicted conformations, enabling the study of transporter motion. Such analysis of functional polymorphisms allows determination of their potential role in transport and resistance. The bacterial MsbA ABC pump is a PfMDR1 homologue. MsbA crystals in different conformations were used to create PfMDR1 models with Modeller software. Sequences were aligned with ClustalW and analysed by Ali2D revealing a high level of secondary structure conservation. To validate a potential drug binding pocket we performed antimalarial docking simulations. Using aminoquinoline as probe drugs in PfMDR1 mutated parasites we evaluated the physiology underlying the mechanisms of resistance mediated by PfMDR1 polymorphisms. We focused on the analysis of well known functional polymorphisms in PfMDR1 amino acid residues 86, 184, 1034, 1042 and 1246. Our structural analysis suggested the existence of two different biophysical mechanisms of PfMDR1 drug resistance modulation. Polymorphisms in residues 86/184/1246 act by internal allosteric modulation and residues 1034 and 1042 interact directly in a drug pocket. Parasites containing mutated PfMDR1 variants had a significant altered aminoquinoline susceptibility that appears to be dependent on the aminoquinoline lipophobicity characteristics as well as vacuolar efflux by PfCRT. We previously described the in vivo selection of PfMDR1 polymorphisms under antimalarial drug pressure. Now, together with recent PfMDR1 functional reports, we contribute to the understanding of the specific structural role of these polymorphisms in parasite antimalarial drug response.https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21912647/pdf/?tool=EBI
collection DOAJ
language English
format Article
sources DOAJ
author Pedro Eduardo Ferreira
Gabrielle Holmgren
Maria Isabel Veiga
Per Uhlén
Akira Kaneko
José Pedro Gil
spellingShingle Pedro Eduardo Ferreira
Gabrielle Holmgren
Maria Isabel Veiga
Per Uhlén
Akira Kaneko
José Pedro Gil
PfMDR1: mechanisms of transport modulation by functional polymorphisms.
PLoS ONE
author_facet Pedro Eduardo Ferreira
Gabrielle Holmgren
Maria Isabel Veiga
Per Uhlén
Akira Kaneko
José Pedro Gil
author_sort Pedro Eduardo Ferreira
title PfMDR1: mechanisms of transport modulation by functional polymorphisms.
title_short PfMDR1: mechanisms of transport modulation by functional polymorphisms.
title_full PfMDR1: mechanisms of transport modulation by functional polymorphisms.
title_fullStr PfMDR1: mechanisms of transport modulation by functional polymorphisms.
title_full_unstemmed PfMDR1: mechanisms of transport modulation by functional polymorphisms.
title_sort pfmdr1: mechanisms of transport modulation by functional polymorphisms.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2011-01-01
description ATP-Binding Cassette (ABC) transporters are efflux pumps frequently associated with multidrug resistance in many biological systems, including malaria. Antimalarial drug-resistance involves an ABC transporter, PfMDR1, a homologue of P-glycoprotein in humans. Twenty years of research have shown that several single nucleotide polymorphisms in pfmdr1 modulate in vivo and/or in vitro drug susceptibility. The underlying physiological mechanism of the effect of these mutations remains unclear. Here we develop structural models for PfMDR1 in different predicted conformations, enabling the study of transporter motion. Such analysis of functional polymorphisms allows determination of their potential role in transport and resistance. The bacterial MsbA ABC pump is a PfMDR1 homologue. MsbA crystals in different conformations were used to create PfMDR1 models with Modeller software. Sequences were aligned with ClustalW and analysed by Ali2D revealing a high level of secondary structure conservation. To validate a potential drug binding pocket we performed antimalarial docking simulations. Using aminoquinoline as probe drugs in PfMDR1 mutated parasites we evaluated the physiology underlying the mechanisms of resistance mediated by PfMDR1 polymorphisms. We focused on the analysis of well known functional polymorphisms in PfMDR1 amino acid residues 86, 184, 1034, 1042 and 1246. Our structural analysis suggested the existence of two different biophysical mechanisms of PfMDR1 drug resistance modulation. Polymorphisms in residues 86/184/1246 act by internal allosteric modulation and residues 1034 and 1042 interact directly in a drug pocket. Parasites containing mutated PfMDR1 variants had a significant altered aminoquinoline susceptibility that appears to be dependent on the aminoquinoline lipophobicity characteristics as well as vacuolar efflux by PfCRT. We previously described the in vivo selection of PfMDR1 polymorphisms under antimalarial drug pressure. Now, together with recent PfMDR1 functional reports, we contribute to the understanding of the specific structural role of these polymorphisms in parasite antimalarial drug response.
url https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21912647/pdf/?tool=EBI
work_keys_str_mv AT pedroeduardoferreira pfmdr1mechanismsoftransportmodulationbyfunctionalpolymorphisms
AT gabrielleholmgren pfmdr1mechanismsoftransportmodulationbyfunctionalpolymorphisms
AT mariaisabelveiga pfmdr1mechanismsoftransportmodulationbyfunctionalpolymorphisms
AT peruhlen pfmdr1mechanismsoftransportmodulationbyfunctionalpolymorphisms
AT akirakaneko pfmdr1mechanismsoftransportmodulationbyfunctionalpolymorphisms
AT josepedrogil pfmdr1mechanismsoftransportmodulationbyfunctionalpolymorphisms
_version_ 1714809408524910592