Carbon nanomaterials and their application to electrochemical sensors: a review
Carbon has long been applied as an electrochemical sensing interface owing to its unique electrochemical properties. Moreover, recent advances in material design and synthesis, particularly nanomaterials, has produced robust electrochemical sensing systems that display superior analytical performanc...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2018-02-01
|
Series: | Nanotechnology Reviews |
Subjects: | |
Online Access: | https://doi.org/10.1515/ntrev-2017-0160 |
id |
doaj-cdb5f86ab5be4f6bbe08a2141ecc735a |
---|---|
record_format |
Article |
spelling |
doaj-cdb5f86ab5be4f6bbe08a2141ecc735a2021-09-06T19:21:11ZengDe GruyterNanotechnology Reviews2191-90892191-90972018-02-0171194110.1515/ntrev-2017-0160Carbon nanomaterials and their application to electrochemical sensors: a reviewPower Aoife C.0Gorey Brian1Chandra Shaneel2Chapman James3The Agri-Chemistry Group, The Department of Agriculture, Science and Environment, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, 4701, Queensland, AustraliaFOCAS Institute, Dublin Institute of Technology, Camden Row, Dublin 8, IrelandThe Agri-Chemistry Group, The Department of Agriculture, Science and Environment, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, 4701, Queensland, AustraliaThe Agri-Chemistry Group, The Department of Agriculture, Science and Environment, School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, 4701, Queensland, AustraliaCarbon has long been applied as an electrochemical sensing interface owing to its unique electrochemical properties. Moreover, recent advances in material design and synthesis, particularly nanomaterials, has produced robust electrochemical sensing systems that display superior analytical performance. Carbon nanotubes (CNTs) are one of the most extensively studied nanostructures because of their unique properties. In terms of electroanalysis, the ability of CNTs to augment the electrochemical reactivity of important biomolecules and promote electron transfer reactions of proteins is of particular interest. The remarkable sensitivity of CNTs to changes in surface conductivity due to the presence of adsorbates permits their application as highly sensitive nanoscale sensors. CNT-modified electrodes have also demonstrated their utility as anchors for biomolecules such as nucleic acids, and their ability to diminish surface fouling effects. Consequently, CNTs are highly attractive to researchers as a basis for many electrochemical sensors. Similarly, synthetic diamonds electrochemical properties, such as superior chemical inertness and biocompatibility, make it desirable both for (bio) chemical sensing and as the electrochemical interface for biological systems. This is highlighted by the recent development of multiple electrochemical diamond-based biosensors and bio interfaces.https://doi.org/10.1515/ntrev-2017-0160bio sensorscarbon nanomaterialscarbon nanotubeselectrochemical sensingsynthetic diamond |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Power Aoife C. Gorey Brian Chandra Shaneel Chapman James |
spellingShingle |
Power Aoife C. Gorey Brian Chandra Shaneel Chapman James Carbon nanomaterials and their application to electrochemical sensors: a review Nanotechnology Reviews bio sensors carbon nanomaterials carbon nanotubes electrochemical sensing synthetic diamond |
author_facet |
Power Aoife C. Gorey Brian Chandra Shaneel Chapman James |
author_sort |
Power Aoife C. |
title |
Carbon nanomaterials and their application to electrochemical sensors: a review |
title_short |
Carbon nanomaterials and their application to electrochemical sensors: a review |
title_full |
Carbon nanomaterials and their application to electrochemical sensors: a review |
title_fullStr |
Carbon nanomaterials and their application to electrochemical sensors: a review |
title_full_unstemmed |
Carbon nanomaterials and their application to electrochemical sensors: a review |
title_sort |
carbon nanomaterials and their application to electrochemical sensors: a review |
publisher |
De Gruyter |
series |
Nanotechnology Reviews |
issn |
2191-9089 2191-9097 |
publishDate |
2018-02-01 |
description |
Carbon has long been applied as an electrochemical sensing interface owing to its unique electrochemical properties. Moreover, recent advances in material design and synthesis, particularly nanomaterials, has produced robust electrochemical sensing systems that display superior analytical performance. Carbon nanotubes (CNTs) are one of the most extensively studied nanostructures because of their unique properties. In terms of electroanalysis, the ability of CNTs to augment the electrochemical reactivity of important biomolecules and promote electron transfer reactions of proteins is of particular interest. The remarkable sensitivity of CNTs to changes in surface conductivity due to the presence of adsorbates permits their application as highly sensitive nanoscale sensors. CNT-modified electrodes have also demonstrated their utility as anchors for biomolecules such as nucleic acids, and their ability to diminish surface fouling effects. Consequently, CNTs are highly attractive to researchers as a basis for many electrochemical sensors. Similarly, synthetic diamonds electrochemical properties, such as superior chemical inertness and biocompatibility, make it desirable both for (bio) chemical sensing and as the electrochemical interface for biological systems. This is highlighted by the recent development of multiple electrochemical diamond-based biosensors and bio interfaces. |
topic |
bio sensors carbon nanomaterials carbon nanotubes electrochemical sensing synthetic diamond |
url |
https://doi.org/10.1515/ntrev-2017-0160 |
work_keys_str_mv |
AT poweraoifec carbonnanomaterialsandtheirapplicationtoelectrochemicalsensorsareview AT goreybrian carbonnanomaterialsandtheirapplicationtoelectrochemicalsensorsareview AT chandrashaneel carbonnanomaterialsandtheirapplicationtoelectrochemicalsensorsareview AT chapmanjames carbonnanomaterialsandtheirapplicationtoelectrochemicalsensorsareview |
_version_ |
1717774940731604992 |