Quantitating the epigenetic transformation contributing to cholesterol homeostasis using Gaussian process

How epigenetics coordinate with genetics to impact protein fitness is unknown. Here, using a Variation Spatial Profiling strategy and machine learning, the authors map HDAC impact on a full set of Niemann pick C1 disease variants to quantitate an unanticipated plasticity in central dogma.

Bibliographic Details
Main Authors: Chao Wang, Samantha M. Scott, Kanagaraj Subramanian, Salvatore Loguercio, Pei Zhao, Darren M. Hutt, Nicole Y. Farhat, Forbes D. Porter, William E. Balch
Format: Article
Language:English
Published: Nature Publishing Group 2019-11-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-019-12969-x
id doaj-cdd46cddd7bd45bbba719375caab04d4
record_format Article
spelling doaj-cdd46cddd7bd45bbba719375caab04d42021-05-11T11:41:19ZengNature Publishing GroupNature Communications2041-17232019-11-0110111510.1038/s41467-019-12969-xQuantitating the epigenetic transformation contributing to cholesterol homeostasis using Gaussian processChao Wang0Samantha M. Scott1Kanagaraj Subramanian2Salvatore Loguercio3Pei Zhao4Darren M. Hutt5Nicole Y. Farhat6Forbes D. Porter7William E. Balch8Department of Molecular Medicine, Scripps ResearchDepartment of Molecular Medicine, Scripps ResearchDepartment of Molecular Medicine, Scripps ResearchDepartment of Molecular Medicine, Scripps ResearchDepartment of Molecular Medicine, Scripps ResearchDepartment of Molecular Medicine, Scripps ResearchSection on Molecular Dysmorphology, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthSection on Molecular Dysmorphology, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthDepartment of Molecular Medicine, Scripps ResearchHow epigenetics coordinate with genetics to impact protein fitness is unknown. Here, using a Variation Spatial Profiling strategy and machine learning, the authors map HDAC impact on a full set of Niemann pick C1 disease variants to quantitate an unanticipated plasticity in central dogma.https://doi.org/10.1038/s41467-019-12969-x
collection DOAJ
language English
format Article
sources DOAJ
author Chao Wang
Samantha M. Scott
Kanagaraj Subramanian
Salvatore Loguercio
Pei Zhao
Darren M. Hutt
Nicole Y. Farhat
Forbes D. Porter
William E. Balch
spellingShingle Chao Wang
Samantha M. Scott
Kanagaraj Subramanian
Salvatore Loguercio
Pei Zhao
Darren M. Hutt
Nicole Y. Farhat
Forbes D. Porter
William E. Balch
Quantitating the epigenetic transformation contributing to cholesterol homeostasis using Gaussian process
Nature Communications
author_facet Chao Wang
Samantha M. Scott
Kanagaraj Subramanian
Salvatore Loguercio
Pei Zhao
Darren M. Hutt
Nicole Y. Farhat
Forbes D. Porter
William E. Balch
author_sort Chao Wang
title Quantitating the epigenetic transformation contributing to cholesterol homeostasis using Gaussian process
title_short Quantitating the epigenetic transformation contributing to cholesterol homeostasis using Gaussian process
title_full Quantitating the epigenetic transformation contributing to cholesterol homeostasis using Gaussian process
title_fullStr Quantitating the epigenetic transformation contributing to cholesterol homeostasis using Gaussian process
title_full_unstemmed Quantitating the epigenetic transformation contributing to cholesterol homeostasis using Gaussian process
title_sort quantitating the epigenetic transformation contributing to cholesterol homeostasis using gaussian process
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2019-11-01
description How epigenetics coordinate with genetics to impact protein fitness is unknown. Here, using a Variation Spatial Profiling strategy and machine learning, the authors map HDAC impact on a full set of Niemann pick C1 disease variants to quantitate an unanticipated plasticity in central dogma.
url https://doi.org/10.1038/s41467-019-12969-x
work_keys_str_mv AT chaowang quantitatingtheepigenetictransformationcontributingtocholesterolhomeostasisusinggaussianprocess
AT samanthamscott quantitatingtheepigenetictransformationcontributingtocholesterolhomeostasisusinggaussianprocess
AT kanagarajsubramanian quantitatingtheepigenetictransformationcontributingtocholesterolhomeostasisusinggaussianprocess
AT salvatoreloguercio quantitatingtheepigenetictransformationcontributingtocholesterolhomeostasisusinggaussianprocess
AT peizhao quantitatingtheepigenetictransformationcontributingtocholesterolhomeostasisusinggaussianprocess
AT darrenmhutt quantitatingtheepigenetictransformationcontributingtocholesterolhomeostasisusinggaussianprocess
AT nicoleyfarhat quantitatingtheepigenetictransformationcontributingtocholesterolhomeostasisusinggaussianprocess
AT forbesdporter quantitatingtheepigenetictransformationcontributingtocholesterolhomeostasisusinggaussianprocess
AT williamebalch quantitatingtheepigenetictransformationcontributingtocholesterolhomeostasisusinggaussianprocess
_version_ 1721446119609729024