Quantitating the epigenetic transformation contributing to cholesterol homeostasis using Gaussian process
How epigenetics coordinate with genetics to impact protein fitness is unknown. Here, using a Variation Spatial Profiling strategy and machine learning, the authors map HDAC impact on a full set of Niemann pick C1 disease variants to quantitate an unanticipated plasticity in central dogma.
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2019-11-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-019-12969-x |
id |
doaj-cdd46cddd7bd45bbba719375caab04d4 |
---|---|
record_format |
Article |
spelling |
doaj-cdd46cddd7bd45bbba719375caab04d42021-05-11T11:41:19ZengNature Publishing GroupNature Communications2041-17232019-11-0110111510.1038/s41467-019-12969-xQuantitating the epigenetic transformation contributing to cholesterol homeostasis using Gaussian processChao Wang0Samantha M. Scott1Kanagaraj Subramanian2Salvatore Loguercio3Pei Zhao4Darren M. Hutt5Nicole Y. Farhat6Forbes D. Porter7William E. Balch8Department of Molecular Medicine, Scripps ResearchDepartment of Molecular Medicine, Scripps ResearchDepartment of Molecular Medicine, Scripps ResearchDepartment of Molecular Medicine, Scripps ResearchDepartment of Molecular Medicine, Scripps ResearchDepartment of Molecular Medicine, Scripps ResearchSection on Molecular Dysmorphology, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthSection on Molecular Dysmorphology, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthDepartment of Molecular Medicine, Scripps ResearchHow epigenetics coordinate with genetics to impact protein fitness is unknown. Here, using a Variation Spatial Profiling strategy and machine learning, the authors map HDAC impact on a full set of Niemann pick C1 disease variants to quantitate an unanticipated plasticity in central dogma.https://doi.org/10.1038/s41467-019-12969-x |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Chao Wang Samantha M. Scott Kanagaraj Subramanian Salvatore Loguercio Pei Zhao Darren M. Hutt Nicole Y. Farhat Forbes D. Porter William E. Balch |
spellingShingle |
Chao Wang Samantha M. Scott Kanagaraj Subramanian Salvatore Loguercio Pei Zhao Darren M. Hutt Nicole Y. Farhat Forbes D. Porter William E. Balch Quantitating the epigenetic transformation contributing to cholesterol homeostasis using Gaussian process Nature Communications |
author_facet |
Chao Wang Samantha M. Scott Kanagaraj Subramanian Salvatore Loguercio Pei Zhao Darren M. Hutt Nicole Y. Farhat Forbes D. Porter William E. Balch |
author_sort |
Chao Wang |
title |
Quantitating the epigenetic transformation contributing to cholesterol homeostasis using Gaussian process |
title_short |
Quantitating the epigenetic transformation contributing to cholesterol homeostasis using Gaussian process |
title_full |
Quantitating the epigenetic transformation contributing to cholesterol homeostasis using Gaussian process |
title_fullStr |
Quantitating the epigenetic transformation contributing to cholesterol homeostasis using Gaussian process |
title_full_unstemmed |
Quantitating the epigenetic transformation contributing to cholesterol homeostasis using Gaussian process |
title_sort |
quantitating the epigenetic transformation contributing to cholesterol homeostasis using gaussian process |
publisher |
Nature Publishing Group |
series |
Nature Communications |
issn |
2041-1723 |
publishDate |
2019-11-01 |
description |
How epigenetics coordinate with genetics to impact protein fitness is unknown. Here, using a Variation Spatial Profiling strategy and machine learning, the authors map HDAC impact on a full set of Niemann pick C1 disease variants to quantitate an unanticipated plasticity in central dogma. |
url |
https://doi.org/10.1038/s41467-019-12969-x |
work_keys_str_mv |
AT chaowang quantitatingtheepigenetictransformationcontributingtocholesterolhomeostasisusinggaussianprocess AT samanthamscott quantitatingtheepigenetictransformationcontributingtocholesterolhomeostasisusinggaussianprocess AT kanagarajsubramanian quantitatingtheepigenetictransformationcontributingtocholesterolhomeostasisusinggaussianprocess AT salvatoreloguercio quantitatingtheepigenetictransformationcontributingtocholesterolhomeostasisusinggaussianprocess AT peizhao quantitatingtheepigenetictransformationcontributingtocholesterolhomeostasisusinggaussianprocess AT darrenmhutt quantitatingtheepigenetictransformationcontributingtocholesterolhomeostasisusinggaussianprocess AT nicoleyfarhat quantitatingtheepigenetictransformationcontributingtocholesterolhomeostasisusinggaussianprocess AT forbesdporter quantitatingtheepigenetictransformationcontributingtocholesterolhomeostasisusinggaussianprocess AT williamebalch quantitatingtheepigenetictransformationcontributingtocholesterolhomeostasisusinggaussianprocess |
_version_ |
1721446119609729024 |