Field Optimization and Electrostatic Stress Reduction of Proposed Conductor Scheme for Pliable Gas-Insulated Transmission Lines

The implementation of stranded conductors in flexible gas-insulated transmission lines (FGILs) requires field intensity minimization as well as field irregularity suppression in order to avoid dielectric breakdown. Moreover, the interdependence of enclosure and conductor sizes of FGILs regarding ele...

Full description

Bibliographic Details
Main Authors: Muhammad Junaid Alvi, Tahir Izhar, Asif Ali Qaiser, Hafiz Shafqat Kharal, Adnan Safdar
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/9/15/2988
Description
Summary:The implementation of stranded conductors in flexible gas-insulated transmission lines (FGILs) requires field intensity minimization as well as field irregularity suppression in order to avoid dielectric breakdown. Moreover, the interdependence of enclosure and conductor sizes of FGILs regarding electrostatic aspects necessitate critical consideration of their dimensional specifications. In this research, geometric and electrostatic field optimization for FGILs regarding stranded conductors is performed. In addition, the effect of conductor irregularity on field dispersion is analyzed, and a semiconducting film (SCF)-coated stranded conductor is proposed as a potential candidate for FGILs. Considering the performed optimized design, an 11 kV scaled-down model of a 132-kV FGIL was also fabricated in order to practically analyze its electrostatic and dielectric performances regarding simple and SCF-coated stranded conductors. Simulation and experimental investigations revealed that the SCF-coated stranded conductor significantly minimized the field irregularity of the FGIL along with improving in its dielectric breakdown characteristics.
ISSN:2076-3417