Selection of compositions with high glass forming ability in the Ni-Nb-B alloy system

A combination of an extension of the topological instability "λ criterion" and the "average electronegativity" has been recently reported in the literature to predict compositions with high glass-forming ability (GFA). In the present work, both criteria have been applied...

Full description

Bibliographic Details
Main Authors: Marcio Andreato Batista Mendes, Luis César Rodríguez Aliaga, Claudio Shyinti Kiminami, Marcelo Falcão de Oliveira, Walter José Botta Filho, Claudemiro Bolfarini
Format: Article
Language:English
Published: Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol) 2012-10-01
Series:Materials Research
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392012000500004
Description
Summary:A combination of an extension of the topological instability "λ criterion" and the "average electronegativity" has been recently reported in the literature to predict compositions with high glass-forming ability (GFA). In the present work, both criteria have been applied to select the Ni61.0Nb36.0B3 alloy with a high glass-forming ability. Ingots were prepared by arc-melting and were used to produce ribbons processed by the melt-spinning technique further characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The Ni61.0Nb36.0B3 alloy revealed a complete amorphization and supercooled liquid region ΔTx = 68 K. In addition, wedge-shaped samples were prepared using copper mold casting in order to determine the critical thickness for amorphous formation. Scanning electron microscopy (SEM) revealed that fully amorphous samples could be obtained, reaching up to ~800 µm in thickness.
ISSN:1516-1439