A Two-Stage Hybrid Default Discriminant Model Based on Deep Forest
<b>Background:</b> the credit scoring model is an effective tool for banks and other financial institutions to distinguish potential default borrowers. The credit scoring model represented by machine learning methods such as deep learning performs well in terms of the accuracy of default...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-05-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/23/5/582 |
id |
doaj-d051401f3c4f4859a7d4ba76e9c152bc |
---|---|
record_format |
Article |
spelling |
doaj-d051401f3c4f4859a7d4ba76e9c152bc2021-05-31T23:28:44ZengMDPI AGEntropy1099-43002021-05-012358258210.3390/e23050582A Two-Stage Hybrid Default Discriminant Model Based on Deep ForestGang Li0Hong-Dong Ma1Rong-Yue Liu2Meng-Di Shen3Ke-Xin Zhang4School of Business Administration, Northeastern University, Shenyang 110819, ChinaSchool of Business Administration, Northeastern University, Shenyang 110819, ChinaSchool of Business Administration, Northeastern University, Shenyang 110819, ChinaSchool of Business Administration, Northeastern University, Shenyang 110819, ChinaSchool of Business Administration, Northeastern University, Shenyang 110819, China<b>Background:</b> the credit scoring model is an effective tool for banks and other financial institutions to distinguish potential default borrowers. The credit scoring model represented by machine learning methods such as deep learning performs well in terms of the accuracy of default discrimination, but the model itself also has many shortcomings such as many hyperparameters and large dependence on big data. There is still a lot of room to improve its interpretability and robustness. <b>Methods:</b> the deep forest or multi-Grained Cascade Forest (gcForest) is a decision tree depth model based on the random forest algorithm. Using multidimensional scanning and cascading processing, gcForest can effectively identify and process high-dimensional feature information. At the same time, gcForest has fewer hyperparameters and has strong robustness. So, this paper constructs a two-stage hybrid default discrimination model based on multiple feature selection methods and gcForest algorithm, and at the same time, it optimizes the parameters for the lowest type II error as the first principle, and the highest AUC and accuracy as the second and third principles. GcForest can not only reflect the advantages of traditional statistical models in terms of interpretability and robustness but also take into account the advantages of deep learning models in terms of accuracy. <b>Results:</b> the validity of the hybrid default discrimination model is verified by three real open credit data sets of Australian, Japanese, and German in the UCI database. <b>Conclusions:</b> the performance of the gcForest is better than the current popular single classifiers such as ANN, and the common ensemble classifiers such as LightGBM, and CNNs in type II error, AUC, and accuracy. Besides, in comparison with other similar research results, the robustness and effectiveness of this model are further verified.https://www.mdpi.com/1099-4300/23/5/582default discriminationfeature selectiondeep forestcredit scorecredit loan |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gang Li Hong-Dong Ma Rong-Yue Liu Meng-Di Shen Ke-Xin Zhang |
spellingShingle |
Gang Li Hong-Dong Ma Rong-Yue Liu Meng-Di Shen Ke-Xin Zhang A Two-Stage Hybrid Default Discriminant Model Based on Deep Forest Entropy default discrimination feature selection deep forest credit score credit loan |
author_facet |
Gang Li Hong-Dong Ma Rong-Yue Liu Meng-Di Shen Ke-Xin Zhang |
author_sort |
Gang Li |
title |
A Two-Stage Hybrid Default Discriminant Model Based on Deep Forest |
title_short |
A Two-Stage Hybrid Default Discriminant Model Based on Deep Forest |
title_full |
A Two-Stage Hybrid Default Discriminant Model Based on Deep Forest |
title_fullStr |
A Two-Stage Hybrid Default Discriminant Model Based on Deep Forest |
title_full_unstemmed |
A Two-Stage Hybrid Default Discriminant Model Based on Deep Forest |
title_sort |
two-stage hybrid default discriminant model based on deep forest |
publisher |
MDPI AG |
series |
Entropy |
issn |
1099-4300 |
publishDate |
2021-05-01 |
description |
<b>Background:</b> the credit scoring model is an effective tool for banks and other financial institutions to distinguish potential default borrowers. The credit scoring model represented by machine learning methods such as deep learning performs well in terms of the accuracy of default discrimination, but the model itself also has many shortcomings such as many hyperparameters and large dependence on big data. There is still a lot of room to improve its interpretability and robustness. <b>Methods:</b> the deep forest or multi-Grained Cascade Forest (gcForest) is a decision tree depth model based on the random forest algorithm. Using multidimensional scanning and cascading processing, gcForest can effectively identify and process high-dimensional feature information. At the same time, gcForest has fewer hyperparameters and has strong robustness. So, this paper constructs a two-stage hybrid default discrimination model based on multiple feature selection methods and gcForest algorithm, and at the same time, it optimizes the parameters for the lowest type II error as the first principle, and the highest AUC and accuracy as the second and third principles. GcForest can not only reflect the advantages of traditional statistical models in terms of interpretability and robustness but also take into account the advantages of deep learning models in terms of accuracy. <b>Results:</b> the validity of the hybrid default discrimination model is verified by three real open credit data sets of Australian, Japanese, and German in the UCI database. <b>Conclusions:</b> the performance of the gcForest is better than the current popular single classifiers such as ANN, and the common ensemble classifiers such as LightGBM, and CNNs in type II error, AUC, and accuracy. Besides, in comparison with other similar research results, the robustness and effectiveness of this model are further verified. |
topic |
default discrimination feature selection deep forest credit score credit loan |
url |
https://www.mdpi.com/1099-4300/23/5/582 |
work_keys_str_mv |
AT gangli atwostagehybriddefaultdiscriminantmodelbasedondeepforest AT hongdongma atwostagehybriddefaultdiscriminantmodelbasedondeepforest AT rongyueliu atwostagehybriddefaultdiscriminantmodelbasedondeepforest AT mengdishen atwostagehybriddefaultdiscriminantmodelbasedondeepforest AT kexinzhang atwostagehybriddefaultdiscriminantmodelbasedondeepforest AT gangli twostagehybriddefaultdiscriminantmodelbasedondeepforest AT hongdongma twostagehybriddefaultdiscriminantmodelbasedondeepforest AT rongyueliu twostagehybriddefaultdiscriminantmodelbasedondeepforest AT mengdishen twostagehybriddefaultdiscriminantmodelbasedondeepforest AT kexinzhang twostagehybriddefaultdiscriminantmodelbasedondeepforest |
_version_ |
1721417441218658304 |