Optimal Design of Transportation Networks with Automated Vehicle Links and Congestion Pricing

We propose a bi-level network design model comprising automated vehicle (AV) links and congestion pricing to improve traffic congestion. As upper-level road planners strive to minimize total travel-time costs by optimizing both the network design and the congestion pricing, lower-level travelers mak...

Full description

Bibliographic Details
Main Authors: Yipeng Ye, Hua Wang
Format: Article
Language:English
Published: Hindawi-Wiley 2018-01-01
Series:Journal of Advanced Transportation
Online Access:http://dx.doi.org/10.1155/2018/3435720
Description
Summary:We propose a bi-level network design model comprising automated vehicle (AV) links and congestion pricing to improve traffic congestion. As upper-level road planners strive to minimize total travel-time costs by optimizing both the network design and the congestion pricing, lower-level travelers make choices about their routes to minimize their individual travel costs. Our proposed model integrates a network design and congestion pricing to improve traffic congestion and we use a relaxation-based method to solve the model. We conducted a series of numerical tests to analyze the proposed model and solution method. Our results indicate that network design is more effective than congestion pricing when the AV market penetration is high and the opposite is true when AV penetration is low. More importantly, we find that a network design of automated vehicle links with congestion pricing is superior to a single network design or congestion pricing, especially when both AVs and conventional vehicles have a relatively large market penetration.
ISSN:0197-6729
2042-3195