Application and Development Progress of Cr-Based Surface Coatings in Nuclear Fuel Element: I. Selection, Preparation, and Characteristics of Coating Materials

To cope with the shortcomings of nuclear fuel design exposed during the Fukushima Nuclear Accident, researchers around the world have been directing their studies towards accident-tolerant fuel (ATF), which can improve the safety of fuel elements. Among the several ATF cladding concepts, surface coa...

Full description

Bibliographic Details
Main Authors: Huan Chen, Xiaoming Wang, Ruiqian Zhang
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Coatings
Subjects:
Online Access:https://www.mdpi.com/2079-6412/10/9/808
Description
Summary:To cope with the shortcomings of nuclear fuel design exposed during the Fukushima Nuclear Accident, researchers around the world have been directing their studies towards accident-tolerant fuel (ATF), which can improve the safety of fuel elements. Among the several ATF cladding concepts, surface coatings comprise the most promising strategy to be specifically applied in engineering applications in a short period. This review presents a comprehensive introduction to the latest progress in the development of Cr-based surface coatings based on zirconium alloys. Part I of the review is a retrospective look at the application status of zirconium alloy cladding, as well as the development of ATF cladding. Following this, the review focuses on the selection process of ATF coating materials, along with the advantages and disadvantages of the current mainstream preparation methods of Cr-based coatings worldwide. Finally, the characteristics of the coatings obtained through each method are summarized according to some conventional performance evaluations or investigations of the claddings. Overall, this review can help assist readers in getting a thorough understanding of the selection principle of ATF coating materials and their preparation processes.
ISSN:2079-6412