The ultrasonic grinding process temperature field study

The use of ultrasonic energy is a promising way to improve the efficiency of the grinding process. However, the analytical study of local temperatures during ultrasonic grinding was not performed. In the process of research, physical and mathematical models have been developed for calculating the te...

Full description

Bibliographic Details
Main Authors: Unyanin Alexander, Khusainov Albert
Format: Article
Language:English
Published: EDP Sciences 2017-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201712901011
Description
Summary:The use of ultrasonic energy is a promising way to improve the efficiency of the grinding process. However, the analytical study of local temperatures during ultrasonic grinding was not performed. In the process of research, physical and mathematical models have been developed for calculating the temperature field during grinding, taking into account the change of the kinematics of microcutting by abrasive grains and the change of the mechanical characteristics of the workpiece material when ultrasonic vibrations are applied. The models take into account that the parameters, characterizing the workpiece material resistance to dispersing, and the thermophysical properties of abrasive grain, workpiece, chips and external environment, depend on the temperature. The modeling was performed on the basis of a simultaneous solution of the thermal conductivity differential equations, written for each interacting object. For equation calculation the finite-element method was used. The methodology and software for the temperature field calculation have been developed. The temperature modeling results are shown. The effect of the vibration amplitude and phase on the local temperatures in the area of abrasive grain, chips and workpiece contact, including the grain and the workpiece contact time, has been determined. The factors affecting the local temperatures have been determined. During ultrasonic activation the workpiece temperature is lowered by 10 %, and the local temperatures in the abrasive grain, workpiece and chips contact area are lowered by 30 %.
ISSN:2261-236X